DISK DRIVE |

N ATARI
DOS 2.5: 1050
OWNER’S MANUAL

IMPORTANT INFORMATION

Like any electrical appliance, the ATARI 1050 Disk Drive uses and pro-
duces radio-frequency energy. If it is not installed and used according to
the instructions in this guide, the equipment may cause interference
with your radio or television reception.

If you believe that this equipment is causing interference with your radio
or television reception, try turning the equipment off and on. If the inter-
ference problem stops when the equipment is turned off, then the equip-
ment is probably causing the interference. With the equipment turned
on, you may be able to correct the problem by trying one or more of the
following measures:

* Reorient the radio or television antenna.
* Reposition the equipment in relation to the radio or television set.
¢ Move the equipment away from the radio or television.

¢ Plug the equipment into a different wall outlet so that the equipment
and the radio or television are on different branch circuits.

If necessary, consult your ATARI Computer retailer or an experienced
radio and television technician for additional suggestions.

Another helpful resource is How to identify and Resolve Radio-TV Inter-
ference Problems, a booklet prepared by the Federal Communications
Commission. This booklet is available from the U.S. Government Print-
ing Office, Washington, DC 20402, Stock No. 004-000-00345-4.

WARNING: This equipment has been certified to comply with the limits
for a Class B computing device, pursuant to Subpart J of Part 15 of FCC
Rules. These rules are designed to provide reasonable protection
against such interference when the equipment is used in a residential
setting. However, there is no guarantee that interference will not occur
in a particular home or residence. Only peripherals (computer input/
output devices, terminals, printers, etc.) that have been certified to
comply with the Class B limits may be attached to this equipment.

Operation of noncertified peripherals with this equipment is likely to
result in interference with radio and TV reception.

ATARI, ATARI BASIC, AtariWriter, 400, 800, 810, 1050, 800XL, 1200XL,

65XE, and 130XE are trademarks or registered trademarks of Atari
Corp.

Every effort has been made to ensure the accuracy of the product docu-
mentation in this manual. However, because we are constantly improv-
ing and updating our computer software and hardware, Atari Corp. is
unable to guarantee the accuracy of printed material after the date of
publication and disclaims liability for changes, errors, and omissions.

No reproduction of this document or any portion of its contents is al-
lowed without the specific written permission of Atari Corp., Sunnyvale,

CA 94086.)k AT ARI"

©1985 Atari Corp. All Rights Reserved.

JATARI
DOS 2.5: 1050

DDDDDDDDD

TABLE OF CONTENTS

goouooooogoogooooano

YOUR ATARI 1050 DISK DRIVE AND DOS

............. v
WhatDOSDOoes ..ot v
DOS 2.5 and Your ATARI Personal Computer System vi
HowtoUseThisManual vii
SECTION 1: YOUR ATARI 1050 DISK DRIVE 1
Connecting Your 1050 DiskDrive 1
Connecting More than One DiskDrive 3
Taking Care of YourDiskettes 4
SECTION 2: GETTING STARTED WITHDOS 2.5 7
LoadingDOS 7
TheDOSMenu 10
LookingataDiskDirectory 13
DuplicatingaDiskette 14
FormattingaDiskette 17
Naming and ReferringtoFiles 19
Running a Cartridge FromDOS 22
CopyingFiles 24
ErasingFiles 27

SECTION 3: SELECTING A DOS MENU OPTION 29

A. DISKDIRECTORY ..., 30
B. RUNCARTRIDGEcc.oiiiiu... 34
C. COPYFILE i 35
D. DELETEFILE(S)t 38
E. RENAMEFILE, 39
F. LOCKFILE i i i 4
G. UNLOCKFILE i, 42
H. WRITEDOSFILES 42
. FORMATDISK i 43
J. DUPLICATEDISK o 44
K. BINARYSAVE i 47
L. BINARYLOAD 53
M. RUNATADDRESSot 54
N. CREATEMEM.SAV i, 55
O. DUPLICATEFILE i, 59
P FORMATSINGLE 61

SECTION 4: USING BASIC COMMANDS

WITHDOS 2.5 63
BASIC Commands UsedWithDOS 63
Tokenized and Untokenized Files 63
Input/Output Control Blocks 66
Using the OPEN/CLOSE Commands 67
Using the INPUT/PRINT Commands 68
Direct Accessing With the NOTE/POINT Commands 70
The PUT/GETCommands 74
Usingthe STATUS Command 76
Substituting the XIO Command for DOS Menu Options 76
Accessing DamagedFiles 79
The AUTORUN.SYSFile 80
APPENDICESoooooiiiiiiiiii 83
A: ALPHABETICAL DIRECTORY OF
BASIC RESERVED WORDS
USEDWITHDISKOPERATIONS 83
B: NOTATIONS AND TERMINOLOGY
USEDWITHDOS 25 ..., 87
C: ERROR MESSAGES
ANDHOWTORECOVER N
D: DOS 2.5 MEMORY MAP
FORG64KRAMSYSTEM 101
E: HEXADECIMAL TO DECIMAL
CONVERSIONTABLE 103
F: HOW TO SPEED UP DATA TRANSFERS
TODISKDRIVE, 105
G: HOW TO TELL DOS
HOW MANY DISKDRIVESYOUHAVE 107

H: USING DOS 2.5 WITH AN ATARI 810

DISKDRIVEORWITHDOS 2.0SFILES 111

I STRUCTURE OF A
COMPOUNDBINARYFILE 117
J: GLOSSARYOFTERMS 119
K: DOS 2.5 AND THE ATARI 130XE RAMDISK 125
L: THEDOS25DISKUTILITIES 129
M: ATARI 1050 DISK DRIVE SPECIFICATIONS G|
INDEX ... 143
CUSTOMERSUPPORT 147

YOUR ATARI 1050 DISK
DRIVE AND DOS

O00ooobOoooooboooooboob

The ATARI® 1050™ Disk Drive is an extremely efficient, high-
speed memory device which greatly enhances your ATARI Per-
sonal Computer system. Your ATARI Computer’s memory retains
the information and instructions you enter through its keyboard.
But the computer’s memory is limited in size, and without a stor-
age device like the 1050, its contents are erased each time you
turn off the computer.

Your ATARI 1050 Disk Drive enables you to store and manage
large amounts of information in separate files on diskettes. With
your ATARI 1050, you can call up your files by name, copy or
erase them, and manage them in many other ways.

What DOS Does

To store information on diskettes you need software that allows
your computer and disk drive to communicate with each other
about your files. That is where the Disk Operating System —
DOS for short — fits into the picture. DOS (pronounced ‘‘doss’’)
is a program that enables your computer and disk drive to work
together in storing, retrieving, and otherwise managing your
diskette files. DOS itself is organized in files contained on the
Master Diskette .

You must load DOS into your computer before it can work with
your disk drive. Some ready-made computer programs already
contain a version of DOS, sparing you the trouble of loading it
separately. But with other programs, especially those in cartridge
form, you have to load DOS along with the program if you plan to
use a disk drive with the program. In any case, you need DOS for
many essential tasks: to prepare blank diskettes to store your
files, for example, and to make backup copies of important files
and diskettes.

DOS 2.5 and Your ATARI Personal
Computer System

With just a few restrictions, DOS 2.5 is compatible with the ear-
lier ATARI DOS 2.0S. You can also convert DOS 3 files to DOS
2.5 formats. This means that you can use DOS 2.5 to manage

files originally stored and managed using the older versions of
DOS.

You can use DOS 2.5 with both the ATARI 1050 and the ATARI

810™ Disk Drive. However, your system must include at least one
1050.

DOS 2.5 allows you to format diskettes and store information in
either single or enhanced density. With enhanced density you
can record about 50 percent more data on each diskette than
you can with DOS 2.0S. But you can manage enhanced-density
storage only if you have an ATARI 1050 Disk Drive; the 810 Disk
Drive is not capable of formatting or managing data stored in
enhanced density (including the files on your DOS 2.5 Master
Diskette — this is why you must have a 1050 Disk Drive to begin
working with DOS 2.5). If your computer system includes an 810
Disk Drive that you will often use to access your files, you may
want to format all your diskettes in single-density.

For complete details on using a system that includes both a 1050
and an 810 Disk Drive and working with DOS 2.0S files with DOS

2.5, see Appendix H. If you are working with DOS 3 Files, see
Appendix L.

With either or both disk drives, use single-sided, double-density
diskettes.

DOS 2.5 works with any ready-made cartridge-based program
that runs on your ATARI Computer — even programs that pre-
date DOS 2.5, including the AtariWriter™ word processor and
ATARI BASIC. With these and other cartridge-based programs,
you can always use DOS 2.5 instead of DOS 2.0S to prepare
data diskettes and manage files.

vi

Many diskette-based programs designed for use with the earlier
DOS 2.0S can also be converted from DOS 2.0S to DOS 2.5,
although you may have to continue to use DOS 2.0S with certain
protected diskette programs (see your program user’s manual if
you are unsure whether a program is protected).

How to Use This Manual

This manual is designed to serve everyone from the beginning
computer user to the advanced programmer. It includes two sec-
tions that introduce the 1050 Disk Drive and DOS, a detailed
guide to all the capabilities of DOS 2.5, a section of more techni-
cal information primarily for programmers, and several appendi-
ces. Appendix J, a brief glossary of terms used in talking about
DOS, may be particularly helpful to the beginner. As you work
with this manual, consult the glossary whenever you are unsure
of a term’s meaning.

If you just purchased your first disk drive, you should start with
Section 1, ““Your ATARI 1050 Disk Drive,”” which provides simple
instructions for setting up and using your drive.

Section 2, ‘‘Getting Started With DOS 2.5, introduces you to the
most frequently used functions of DOS. With step-by-step in-
structions, it explains how to load DOS into your computer, pre-
pare diskettes to store your files, duplicate diskettes, name and
refer to your files, and copy and erase files. Most importantly, it
explains how to make a System Diskette, or working copy of
DOS. This is a very important procedure that you should not
neglect before going on to learn more about DOS. To go through
the examples and exercises in this section, you will need at least
three blank diskettes, one to make your System Diskette and two
to use as practice data diskettes.Since some of the exercises
involve the use of ATARI BASIC, you will also need a BASIC car-
tridge if you have an ATARI 400™, 800™, or 1200XL™ Computer. If
you have a 130XE™, 65XE™, or 800XL™, your computer is
equipped with built-in BASIC.

Section 3, ‘‘Selecting a DOS Menu Option,”’ covers every func-

tion on the DOS 2.5 Menu and provides step-by-step examples of
how to use each one.

vii

Section 4, **'Using BASIC Commands with DOS 2.5,” will be of
interest primarily to the advanced user or programmer.

The appendices cover a number of both technical and nontech-
nical topics. You may find the following especially useful:

* See Appendix C if you run into any error messages as you
get started with DOS 2.5.

* If you have more than one disk drive, see Appendix G.

* If your computer system includes an ATARI 810 Disk Drive
or if you have diskette files created and stored using the
earlier ATARI DOS 2.0S, see Appendix H.

* If you have an ATARI 130XE Computer, see Appendix K.

* Ifyou have diskette files created and stored using ATARI
DOS 3, see Appendix L.

viii

SECTION 1
YOUR ATARI 1050 DISK
DRIVE

Uooooudonoououooooog

When you unpack your ATARI 1050 Disk Drive, be sure you have the
following items:

» ATARI 1050 Disk Drive
Serial I/O Cable
AC Power Adapter

DOS 2.5 Master Diskette
1050 Owner’s Manual

Warranty/Registration Card

If you are missing any of these items, contact your dealer. You should
save the packing materials in case you ever want to transport the disk
drive or send it through the mail.

Connecting Your 1050 Disk Drive

Follow these steps to connect your 1050 to your ATARI Personal
Computer:

1. Turn off the power to all components of your computer
system.

2. Make sure the Power ON/OFF switch of your 1050 (located on
the front panel of your disk drive) is in the OFF position.

3. First plug the smaller end of the AC Power Adapter cord into
the hole marked POWER IN on the back of the disk drive.
Then plug the AC Power Adapter into the wall socket.

1050 Disk Drive

ATARI Computer

‘ m;][El.@O.ﬁJ \E-[_—_l-ou

\ y ‘

Serial /0 Cable

AC Power Adapter

&)
@I

4. Plugone end of the Serial I/O Cable into the jack marked
PERIPHERAL on the computer console. Then plug the other
end of the cable into one of the two jacks marked /O CON-
NECTORS located on the back of the disk drive.

Warning: Your ATARI 1050 Disk Drive should be placed 12
inches or more from your television. Your TV creates a strong
magnetic field that could affect the information recorded on
your diskettes.

5. Turn on the disk drive. Both the POWER light (next to the ON/
OFF switch) and the BUSY light (above the switch) will go on.
When the BUSY light goes off, you are ready to insert a disk-
ette.

Your disk drive is now ready to receive the DOS 2.5 Master Disk-
ette. It is recommended that you read the next section of this
manual before proceeding.

Connecting More Than One Disk Drive

You can attach up to four ATARI Disk Drives, in addition to ATARI
Printers, Program Recorders or other components, to your ATARI
Computer. Multiple disk drives (and other components) are con-
nected to each other in a daisy chain, using the Serial I/O Cables
supplied with each component.

Disk Drive Disk Drive

Computer Printer

[TTTITTITTITITOONNTY, - [TV
eyl ricy] Nl

1) S G|

There are two I/O CONNECTOR jacks on the back of each disk
drive. To install multiple drives, connect a Serial /0 Cable from
one |/0 CONNECTOR on the first disk drive to the jack labeled
PERIPHERAL on the computer console. Then connect another
Serial /0 Cable from the remaining I/O CONNECTOR on the first
drive to either /0O CONNECTOR on the second drive. Connect
any additional components in the same way.

Setting Drive Select Switches

if your system includes more than one disk drive, you must set
the drive codes using two small identifier switches on the back of
each drive. These switches tell the computer which drive you're
referring to in your programs and commands.

To set the switches, first turn off the power to the disk drives.
Then turn the drives around so that you can see the DRIVE SE-
LECT window on the back of each drive. Inside the window is a
black switch; behind it, a white switch.

Using a pen or a small screwdriver,
set the switches in the window to
match the patterns shown here for
Drive 1, Drive 2, and so forth. You
must always have one drive set as
Drive 1.

F
B AN al

Once you have set the drive switches, be sure to label each disk
drive with its number so that you will not mistake one drive for
another when using DOS.

Taking Care of Your Diskettes

The surface of a diskette is coated with a sensitive magnetic
material that stores your data. To ensure the long life and reliabil-
ity of your diskettes, you must handle them properly and with
care.

Each diskette is permanently enclosed in a black protective en-
velope and is normally stored in a paper sleeve. Most diskettes
have a small write-protect notch on one edge of the black pro-
tective envelope. By covering this notch with one of the small
adhesive rectangular tabs provided by the diskette manufac-
turer, you can avoid accidentally erasing or writing over any data
on a diskette. See Section 2 for more information on write pro-
tecting your diskettes.

Remember these rules for the proper care and handling of disk-
ettes:

Never turn your disk drive on or off with a diskette in the
drive, and never leave a diskette in the drive while it's turned
off.

Never wet or wash a diskette. Use a soft brush or com-
pressed air from a spray can to remove any dust from the
surface.

Do not bend your diskettes; they must turn freely in the
protective envelope. Handle them with care when loading or
unloading.

Store diskettes in their paper sleeves standing on edge.

Store your diskettes away from your television set. The
strong magnetic fields produced by the television can parti-
ally erase the data stored. Keep your diskettes away from
electrical devices, including the telephone.

Do not store your diskettes in direct sunlight. Keep them
away from any excessive heat.

Because a diskette turns inside its envelope, damage to the
envelope can result in damage to the diskette.

Do not write on your diskettes with a pencil or ball-point pen.
The sharp point of a pencil or ball-point pen can score the
surface of a diskette. Use a felt-tip pen to mark the diskette
label or write on the label before you put it on the diskette.

Do not use erasers on diskette labels. Eraser dust is abrasive
and will damage diskettes.

Do not attach paper clips to your diskettes.

Never touch a diskette where it is exposed through the disk-
ette envelope. Fingerprints can damage the magnetic me-
dium.

Labeling Your Diskettes

Most diskettes come with labels already affixed to one corner of
the black protective envelope or with a set of labels that you can
attach to each diskette. Be sure to label every diskette on which
you copy or store programs and files.

SECTION 2
GETTING STARTED
WITH DOS 2.5

LDOO000O0U0BDo0o0o0oooOooon

Loading DOS

Follow these steps to load DOS 2.5 with ATARI BASIC (if youdo
not want to load BASIC, see “‘DOS With and Without BASIC,’on
the following page):

1. Make sure that your computer and disk drive are turned off. If
you have an ATARI 400, 800, or 1200XL. Computer, insert an
ATARI BASIC cartridge in your computer’s cartridge slot and
make sure that there is no diskette in your disk drive. If you
have an ATARI 130XE, 65XE, or 800XL with built-in BASIC,
just be sure there is no cartridge in your computer, and no
diskette in your disk drive.

2. Turn on your disk drive — if you have more than one disk drive
in your system you must always use Drive 1 to load DOS. The
drive makes a whirring sound when turned on, and the
POWER and BUSY lights go on. After a few seconds, the
noise stops and the BUSY light goes off.

Caution: Never insert or remove a diskette in your drive while
the BUSY light is on.

3. When the BUSY light goes off, turn the latch on the front of
your ATARI 1050 Disk Drive 1o the open (horizontal) position.
Remove your DOS 2.5 Master Diskette from its protective
paper sleeve and insert it in your drive, with the label facing
up and toward you, until it clicks into place. Then turn the
latch to the closed (vertical) position.

4. Turn on your computer. The disk drive’s BUSY light goes on
again as DOS loads into your computer, and the drive makes
a clicking sound. If you turn up the volume on your TV, you
can hear it beep as DOS loads.

5. When the READY prompt (from ATARI BASIC) appears on
your screen, type DOS and press (Return).

DOS With and Without BASIC

Naturally, you won’t always be using DOS 2.5 with ATARI BASIC.
To load DOS without BASIC if you have an ATARI 400, 800, or
1200XL Computer, simply follow the steps explained above with-
out inserting your BASIC cartridge and omit step 5.

If you have an ATARI 130XE, 65XE, or 800XL, your computer is
equipped with built-in BASIC. BASIC is loaded into your com-
puter whenever you turn it on, including when you load DOS —
unless you first insert a program cartridge in the computer’s car-
tridge slot or you hold down the key on your computer
console as you turn it on.

As you've seen, going from BASIC to DOS is easy — just type
DOS and press (Return). Going from DOS back to BASIC is just as
easy; see ‘‘Running a Cartridge From DOS.”

Boot Errors

Loading a program into a computer when you first turn it on is
called booting up. If a problem occurs when booting up your sys-
tem, the following appears on your screen:

BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
BOOT ERROR
=OOT ERROR

When you start your system, a boot error can occur for the follow-
ing reasons:

¢ The inserted diskette does not have DOS on it.

¢ The diskette was inserted incorrectly.

¢ The diskette has been scratched, warped, or marred. In this
case, use another diskette.

¢ The diskette is an enhanced-density diskette in an ATARI
810 Disk Drive.

The following conditions will also cause a boot error, but no indi-
cation of it will appear on the screen.

¢ The disk drive was turned on after the computer was turned
on.

¢ The disk drive is not properly connected to the computer
console.

¢ The Power Adapter plug has loosened from its wall socket.

¢ The Power Adapter plug has loosened from the disk drive
POWER IN socket.

* The drive code setting is not correct.

If you have checked and found none of these problems, take the
following steps:

1. Insert the DOS 2.5 Master Diskette or System Diskette (work-
ing copy of DOS 2.5) in Drive 1 and reboot the system.
2. Remove the DOS diskette.

3. Reinsert the problem diskette and save any accessible files
on another diskette using the process for copying files (see
C., COPY FILE, in Section 3).

4. With the problem diskette in Drive 1, use the DELETE FILE(S)
function to erase all the files.

5. Try using the diskette again. If this fails, the diskette will have
to be reformatted (see I., FORMAT DISK, in Section 3).

The DOS Menu

Once you’ve loaded DOS into your computer and, if necessary,
typed DOS and pressed (Retun), the DOS Menu appears on your
TV or monitor screen. The menu presents a list of DOS func-
tions. The prompt below the menu invites you to make a selec-
tion. You choose the function you want to use by pressing the
letter corresponding to your selection and pressing (Return). DOS
then asks you for the information it needs to proceed (see
“Prompts and Responses,” later in this section).

DISK OPERATING SYSTEM Il VERSION 2.5
COPYRIGHT 1984 ATARI CORP.

A. DISK DIRECTORY I. FORMAT DISK

B. RUN CARTRIDGE J DUPLICATE DISK
C. COPYFILE K. BINARY SAVE

D. DELETE FILE(S) L. BINARY LOAD

E. RENAME FILE M. RUN AT ADDRESS
F. LOCKFILE N. CREATE MEM. SAV
G. UNLOCKFILE O. DUPLICATE FILE
H. WRITE DOS FILES P. FORMAT SINGLE

SELECTITEM OR FOR MENU
m

Here is a summary of the DOS 2.5 Menu options. Those marked
with an * are introduced later in this section: all are explained in
detail in Section 3.

*A. DISK DIRECTORY
This option allows you to call up a complete or selective list
of the files on a diskette, showing the filenames, extenders
(if any), the number of sectors allocated to each file, and the
number of free sectors still available on the diskette.

*B. RUN CARTRIDGE
(Can ONLY be used with built-in BASIC or with a cartridge
installed in the computer console.) This option allows you to
return control of your system to built-in BASIC or to the car-

tridge inserted in the cartridge slot (the left cartridge slot in
the ATARI 800 Computer).

10

*C.

*D.

*1

*J.

COPY FILE

Use this option when you have two or more disk drives and
you want to copy files from one diskette to another. Also use
this option to copy a file on the same diskette, assigning a
second name to the copy.

DELETE FILE(S)
This option lets you erase a file from a diskette, increasing
the available space on the diskette.

. RENAME FILE

Use this option when you want to change the name of a file.

LOCKFILE

This option can be used to prevent you — or anyone else —
from changing, renaming, or accidentally erasing a file. You
will still be able to read the file, but will not be able to write to
it. When the directory is displayed, an asterisk is placed in
front of the filename to indicate that the file is locked.

. UNLOCK FILE

This removes the asterisk from in front of the filename and
allows you to make changes to the file, rename it, or delete
it.

. WRITE DOS FILES

Use this option to add the DOS files (DOS. SYS and
DUP.SYS) on your Master Diskette or System Diskette to a
diskette in any disk drive.

FORMAT DISK

This option is used to format a blank diskette, which is neces-
sary before you can record any information on it. Be sure you
do not have any files you want to keep on a diskette before
formatting it. This option will format a diskette in enhanced
density provided you are using a 1050 Disk Drive; otherwise,
it will format in single density.

DUPLICATE DISK

This is the option you choose when you want to create an
exact duplicate of a diskette. This option will automatically
format the destination disk.

m

K. BINARY SAVE
With this option you can save the contents of specified
memory locations on a diskette. (Manipulates assembly
language programs.)

L. BINARY LOAD
This option lets you retrieve an object file from a diskette. It
is the reverse function of BINARY SAVE. (Manipulates as-
sembly language programs.)

M. RUN AT ADDRESS
With this option you can enter the hexadecimal starting
address of an object program after it has been loaded into
RAM with a BINARY LOAD. (Executes assembly language
programs.)

N. CREATE MEM.SAV
This option allows you to reserve space on a diskette for the
program in RAM to be stored while the DUP.SYS file is being
used. For some applications like programming, it is a good
idea to create a MEM.SAV file on each new diskette you
intend to use as a System Diskette. As you become more
familiar with DOS, you may find there are cases where a
MEM.SAV file serves no useful function. So the inconven-
ience of waiting for MEM.SAV to load into memory may war-
rant deleting it from the diskette.

*O. DUPLICATE FILE
This option enables you to copy a file from one diskette to
another, even if you have only a single disk drive.

*P. FORMAT SINGLE
Use this option when you want to format a diskette in single
density using a 1050 Disk Drive.

Prompts and Responses

The questions and requests that DOS displays on your screen
are called prompts. The answers you type into your computer are
responses. DOS always prompts you for the information it needs
to carry out your wishes. You will soon become familiar with the
most common DOS prompts; since DOS requires the same kind
of information for many of its functions, it won’t be long before

12

many of your responses become almost automatic. As you use
each function of DOS, the program lists its successive prompts
and your responses on your screen as you proceed.

After typing a response into your computer, you must press

to confirm your response. (Pressing only in re-
sponse to certain prompts tells DOS to supply a preselected, or
default, response — see ‘‘Defaults,’”’ later in this section). Many
prompts require a simple yes or no answer. To answer yes, type Y
and press (Return]. To answer no, type N and press (Return).

If you make a mistake while typing in a response, press
Delete Bk Sp) to erase the error, then type in the correct information.
To delete an entire response before you confirm it, press

and [Delete Bk Sp) simultaneously.

Looking at a Disk Directory

Each diskette you use to store information has a disk directory
that keeps track of the files stored on the diskette, how much
room they take up, and how much free space is left on the disk-
ette for storing more information. The DISK DIRECTORY selec-
tion on the DOS Menu allows you to check what files you have on
your diskettes.

Since your DOS Master Diskette itself contains files, you can try
out the function by looking at the directory of those files. With the
DOS Menu on your screen, type A, then press twice.

DISK OPERATING SYSTEM Ii VERSION 2.5
COPYRIGHT 1984 ATARI CORP.

A. DISK DIRECTORY I. FORMAT DISK

B. RUN CARTRIDGE J DUPLICATE DISK
C. COPYFILE K. BINARY SAVE

D. DELETE FILE(S) L. BINARYLOAD

E. RENAMEFILE M. RUN AT ADDRESS
F. LOCKFILE N. CREATE MEM. SAV
G. UNLOCKFILE O. DUPLICATEFILE
H

. WRITE DOS FILE P. FORMAT SINGLE
SELECT ITEM OR FOR MENU
A

DIRECTORY-SEARCH SPEC, LIST FILE?

DOS SYS 037
DUP SYS 042
RAMDISK COM 009
SETUP COM 070
COPY32 COM 056

X COM 057

DISKF
739 FREE SECTO

R
SELECT ITEM OR FOR MENU
»

13

These are the files that make up the DOS 2.5 program. The
three-digit numbers in the right-hand column indicate how many
sectors each file occupies on the Master Diskette. (See ‘Format-
ting a Diskette” for an explanation of sectors.) The line below the
index tells you how many sectors remain for storing additional
information on the diskette.

DOS.SYS and DUP.SYS are the files that execute the standard
DOS functions. For an explanation of RAMDISK.COM, see Ap-
pendix K. Explanations of SETUP.COM, COPY32.COM, and
DISKFIX.COM appear in Appendix L.

Duplicating a Diskette

With the DUPLICATE DISK option on the DOS 2.5 Menu, you can
create an exact replica of a diskette. This function copies every-
thing from your original, or source, diskette onto another, or desti-
nation, diskette. It also formats your destination diskette.

Caution: The DUPLICATE DISK function erases or writes over
any information that may already be on a destination diskette.
Never use a destination diskette that contains valuable files.

To Duplicate Your DOS Diskette

To learn how the DUPLICATE function works, make a duplicate
of your DOS 2.5 Master Diskette. This is also an important safe-
guard. You should use your duplicate as your working copy of
DOS, and keep the Master Diskette itself as a backup copy. Then
you can use DOS without worrying about accidental damage to
your working diskette.

As your destination diskette, use a new, blank diskette.

If You Have One Disk Drive

1. With the DOS Menu on your screen, type J and press (Return),
The prompt DUP DISK—SOURCE, DEST DRIVES? appears.

2. Type 1,1 and press (Return). The prompt — INSERT SOURCE
DISK, TYPE RETURN appears.

14

3. Place the diskette you want to duplicate in the drive — in this
case, your DOS 2.5 Master Diskette — and press (Return). The
disk drive begins to “‘read’’ the information contained on your
source diskette. Then DOS prompts you to INSERT DESTI-
NATION DISKETTE, TYPE RETURN.

4. Remove your source diskette from the disk drive and insert a
blank diskette (formatted or unformatted), then press
(Return). DOS writes the information it has read from your
source diskette to your destination diskette, first formatting
the destination diskette.

How many times DOS prompts you to insert your source and
destination diskettes in your disk drive will depend on how much
data is recorded on the source diskette and the amount of RAM
in your computer system. When the prompt SELECT ITEM OR
FOR MENU appears, the duplication process is
complete.

Label your new copy of DOS 2.5 clearly — something like ‘DOS
2.5 — System Disk.’’ Attach a write-protect tab to it (see ““Using
Write-Protect Tabs,’’) and use it as your working copy of DOS
from now on. Store your original DOS 2.5 Master Diskette in a
safe place.

If You Have Two Disk Drives

1. With the DOS Menu on your screen, type J and press (Return].
The prompt DUP DISK — SOURCE, DEST DRIVES?
appears.

2. Type 1,2 and press (Return). The prompt INSERT BOTH
DISKS, TYPE RETURN appears.

3. Place your source diskette in Drive 1 — in this case, your
original DOS 2.5 Master Diskette — and a blank diskette (for-
matted or unformatted) in Drive 2, then press (Return].

4. DOS duplicates all the information from your source diskette
on your destination diskette, first formatting the destination
diskette.

When the prompt SELECT ITEM OR FOR MENU ap-
pears, the duplication process is complete.

15

Label your new copy of DOS 2.5 clearly — something like ‘DOS
2.5 — System Disk’’. Attach a write-protect tab to it (see “'Using
Write-Protect Tabs,” below) and use it as your working copy of

DOS from now on. Store your original DOS 2.5 Master Diskette
in a safe place.

(Another way to make a DOS System Diskette is to use option H.,
WRITE DOS FILES, to write DOS.SYS and DOS.DUP on a for-
matted diskette. With some applications, such as AtariWriter, it

is recommended that you write DOS files on every data diskette
you plan to use to store files. This way, you can load DOS directly
from your data diskettes as you load the application program.
See your AtariWriter User’s Guide and Section 3 of this manual.)

The DUPLICATE DISK function is sometimes confused with the
COPY FILES function of DOS. The COPY FILES function copies
only the files you specify from a source diskette. The DUPLI-
CATE DISK function is more efficient when you want to make

complete backup copies of data diskettes containing several
files.

Using Write-Protect Tabs

Before duplicating a diskette or copying files from one diskette to
another, it is a good idea to attach a write-protect tab to your
source diskette. (Included with every package of diskettes that
you buy, these tabs are adhesive but can easily be removed.)
When folded over the notch in the edge of a diskette, a write-
protect tab prevents your disk drive from writing information over
any files that may already be there.

Particularly when you are using one disk drive to duplicate or
copy files, you might mistakenly insert the source diskette when
your disk drive is ready to write information onto the destination
diskette. A write-protect tab on the source diskette prevents the
drive from writing over (and destroying) your original data.

16

—

[? Wirite-Protect Tab

O Write-Protect Notch

Formatting a Diskette

Unless they’re preformatted, the diskettes you buy to store your
files must be prepared to record information from your computer.
This process is called formatting, or initializing, a diskette. For-
matting organizes the surface of a diskette into tracks and sec-
tors so that your computer can store and retrieve information on
it in an orderly way (see illustration on the next page).

Caution: Formatting a diskette erases any information that may
already be recorded on it. Never format your Master Diskette or a
data diskette that contains valuable files.

The DOS 2.5 Menu offers you two options for formatting disk-
ettes. When used with a 1050 Disk Drive, Option |., FORMAT
DISK, will format the diskette in enhanced density. If DOS finds,
when executing this function, that the drive you have specified
for formatting is an 810, it will proceed to format the diskette in
single density. Option P., FORMAT SINGLE, formats only in sin-
gle density. It should be used when you want to format a diskette
in single density on a 1050 Disk Drive.

If your system includes both an ATARI 1050 Disk Drive and an
810 Disk Drive, or if you have files created and stored using the
earlier ATARI DOS 2.0S, see Appendix H. If you have files cre-
ated with DOS 3, see Appendix L.

17

(one revolution)

(section of track) :

Formatted Diskette

E Write-Protect Notch

Track -

.
|

y
w

4

.
(w (: :)
\\{(\({\{\\\\\\\\\\\\\ &

Sector

\

Timing Hole

N

\
|
<

Read-Write Area

To Format a Diskette

To get acquainted with the formatting procedure, format two
blank diskettes to use when doing the exercises described in the
rest of this section. With the DOS Menu on your screen:

1.

18

To format in enhanced density on a 1050 Disk Drive, type |
and press (Return]; or to format in single density, type P and

press (Return]. The prompt WHICH DRIVE TO FORMAT? ap-
pears.

Type the number of the disk drive in your system in which you
want to format the diskette. The prompt TYPE ‘Y’ TO FOR-
MAT DISK n (where n is the number of the drive you specified)
appears. This gives you a chance to make sure that the speci-
fied drive contains a diskette that you want to format — re-

member, formatting erases any files already contained on a
diskette.

. Place the diskette to be formatted in the drive you have speci-

fied. Type Y and press (Return). The BUSY light goes on as the
drive begins to format the diskette.

When the prompt SELECT ITEM OR FOR MENU ap-
pears, formatting is complete. You can now store files or write
DOS Files on the formatted diskette.

Now repeat the procedure with another diskette.

Naming and Referring to Files

To manage your files with DOS, you have to give each file a dis-
tinctive filename. You also have to use a device code to tell your
computer what part of your system — for example, Disk Drive 1
— you want to handle the file at any particular time. Taken to-
gether, the device code and the filename that you specify make
up afilespec (short for *‘file specification’’). Here is what a typical
filespec looks like:

D1:ATARI130.BAS

Device |

name

Device
number
(optional)

Required
colon

Filename
(upto 8
characters)

Period required
as separator if
extender is used

Extender
(optional)
includes

0 to 3 characters

19

Device Codes

The D1: in the filespec illustration is a device code; there, it rep-
resents the part of your system you want DOS to use in carrying
out acommand. The D stands for disk drive, and the 1 specifies
the number of the drive in your computer system. The colon (:)
must always be used with a device code.

There are also codes for other devices that DOS can access or
activate. The default display device, for example (see ‘‘De-
faults,” below) is E:, which stands for your TV screen or monitor;
you could also use P:, which stands for a printer. See DISK DI-
RECTORY in Section 4 for some examples of using different
display devices. C:, for cassette program recorder, is another
device code that you might specify when using DOS, your disk
drive, and a program recorder to manage files.

Defaults

For your convenience, default responses to several of its own
prompts are built in to DOS 2.5.

Since most DOS users have only one disk drive, for example,
one of the more convenient defaults in DOS is D1: — Disk Drive
1 of your computer system. You have seen how DOS defaults to
this device when you press in response to a DIRECTORY-
SEARCH SPEC, LIST FILE prompt. DOS also defaults to D1: as
a source and destination device — provided that you press

in response to the appropriate prompts — when you are
using most other DOS functions.

If you have only one disk drive, you do not have to specify a drive
number when entering the device code for it. DOS understands
D: to mean Drive 1.

Filenames

Each file stored on a given diskette must have a unique filename;
otherwise, your computer system wouldn’t know which file you
wanted to work with.

Filenames may be up to eight characters in length, followed if
you like by a period and an extender of up to three characters.

20

Except for the period that separates the filename proper from the
optional extender, all the characters in a filename must be letters

or numbers, not punctuation marks or other symbols. So you
could use —

these filenames: but not these;
PROGRAM.6J PROG.6J.BAS
ACCT4321 ACCOUNT4321
LETTER1

It you try to enter an invalid filename, DOS refuses to accept it
and displays ERROR 165 on your screen.

Extenders, sometimes called file types, can be useful when
you're naming related but distinct files that you might want to
manage as a group (see “Wild Cards’’). For example, you could
use BAS as an extender when naming all programs you write in
ATARI BASIC—PROGRAM1.BAS, PROGRAM2.BAS, and so on.
You might use LETTER.BUS to identify a business letter, and
LETTER.SIS for a letter to your sister. If you were writing a book
with a word processing program, you might store the various
chapters on diskette as CHAPTER .1, CHAPTER.2, and so forth.

Wild Cards

In a game of poker, wild cards are valuable because they stand
for any card you choose. Similarly, DOS recognizes special wild
card symbols that can stand for any character or combination of
characters in a filename. A major convenience, wild cards en-

able you to refer to a group of files rather than to each one indi-
vidually.

The two wild cards recognized by DOS are the question mark (?)
which stands for any single character, and the asterisk (*), which
stands for any combination of characters in a filename proper or
in an extender. Working with the following files, for example, you
could also use PROGRAM?.* to specify all the program files,
including PROGRAM1.PIL. The file LETTER?.BUS would refer
to all the business letter files.

PROGRAM1.BAS LETTER1.BUS
PROGRAM2.BAS LETTER2.BUS
PROGRAM3.BAS LETTER3.BUS
PROGRAM1.PIL LETTER.SIS

21

You can now understand the entire default filespec used by DOS
in a DISK DIRECTORY procedure. When you press in
response to the DIRECTORY — SEARCH SPEC, LIST FILE
prompt, DOS understands your response as D1:*.*. The D1:, as
you know, is the default code (Disk Drive 1). The *.* stands for all
files on the diskette you want to check.

Running a Cartridge From DOS

With ATARI BASIC (whether it’s in cartridge form or built in your
computer) or any other cartridge-based programming language,
you can write your own programs to run on your ATARI Computer.
And you can use programming language commands to store and
retrieve your programs on diskette. But you need DOS to man-
age your program files in other ways — for example, to copy or
erase them. By enabling you to shift control of your computer
from DOS to a programming language cartridge, the RUN CAR-
TRIDGE function on the DOS Menu allows you to use DOS and a
programming language at the same time.

The procedures described in this section are based on the as-
sumption that you’re using ATARI BASIC (and that you’ve loaded
BASIC along with DOS — see ‘‘Loading DOS,”’ earlier in this
section). However, the same procedures apply to using DOS with
other programming language cartridges.

From BASIC to DOS and Back Again

When you load BASIC and DOS together, as explained earlier in
this section, the READY prompt appears. Again, going from
BASIC to DOS is easy — just type DOS, then press (Return]. The
DOS Menu appears on your screen.

To go from DOS to BASIC (or any cartridge-based program),

select B, RUN CARTRIDGE, from the DOS Menu, then press
(Return).

22

Saving and Loading a BASIC Program

The BASIC computing language includes its own SAVE and
LOAD instructions that you use to store and retrieve your pro-
grams on diskette. To try saving and loading a BASIC program,
first select RUN CARTRIDGE from the DOS Menu. When the
READY prompt appears, type the following program exactly as it
appears (even the spaces and punctuation are crucial in pro-
gramming). Press at the end of each line. If you make a
mistake, you can press to eraseiit.

16

FEIMT "THIS LIME REFEATS ITSELF®
GOTO 1@

You’ve just written a two-line BASIC program that tells your com-
puter to print — display on your screen — THIS LINE REPEATS
ITSELF and then go back to the previous instruction. You can
imagine what’s going to happen when this program runs.

Try it. Type RUN, then press (Retun]. When you’ve seen enough,
press to stop the program from running.

To store this (or any) BASIC program on diskette, you have to
enter the appropriate BASIC command — SAVE — followed by a
filespec that DOS understands. Replace your DOS diskette in
Drive 1 with one of the initialized practice diskettes. Then type
SAVE ‘D:PROGRAM1.BAS"’ and press (Retum). As your disk
drive goes to work, your program is recorded on diskette.

Though it has now been stored on diskette, your program also
remains in your computer’s memory. To see the program load
back into your computer, first type NEW and press to clear
it from memory. Then press and at the same time to
clear it from your screen. Next, type LOAD ‘‘D:PROGRAM1.
BAS’’ and press (Retun). As your disk drive goes to work, the
program is loaded back into your computer. Finally, type LIST
and press to bring the program back up on your screen.

Note: The BASIC LOAD and SAVE commands are not the same
as DOS LOAD and SAVE commands.

23

Now, though you have loaded it into your computer’s memory,
the program also remains on your data diskette. Once saved,
your files remain on diskette until you use the DELETE FILE(S)
function on the DOS Menu to erase them (see ‘‘Erasing Files”’
later in this section).

Copying Files

With the COPY FILE and DUPLICATE FILE options on the DOS
Menu, you can copy your files from one diskette to another. You
can also make a backup copy of a file on the same diskette as
the original, provided you give the copy a different filename.

Note: You cannot copy the files that make up DOS — DOS.SYS
and DUP.SYS — using either COPY FILE or DUPLICATE FILE.
Instead, use option H., WRITE DOS FILES, to copy these files
(see Section 3).

Creating Some Practice Files

When going through the previous section of this manual, you
created a short program in BASIC and saved it on a data diskette
as PROGRAM1.BAS. To learn how to use the copying functions,
create a few more practice files.

Load DOS and BASIC, if necessary; if you have already done so
and have the DOS Menu on your screen, select RUN CAR-
TRIDGE. Insert your data diskette (the one containing your PRO-
GRAM1.BAS file) in Drive 1 of your system. When the READY
prompt appears, type the three SAVE commands below. Press
after each line and wait while your disk drive saves the file
before proceeding. In effect, these files are nothing more than
filenames, but they’re enough for you to work with as you learn
how to copy files.

ALE M T PROG
TN TR

To Copy Files

Which of the two copying options you should use depends on
how many disk drives you have and whether you want to copy a
file from one diskette to another or on the same diskette.

24

If your system includes both an ATARI 1050 Disk Drive and an
810 Disk Drive, or if you have files created and stored using the
earlier ATARI DOS 2.0S, see Appendix H. If you have DOS 3
files, see Appendix L.

From One Diskette to Another With One Disk Drive

Follow these steps to copy a file from one diskette to another
using one disk drive:

1. With the DOS Menu on your screen, type O for DUPLICATE
FILE and press (Return). The prompt NAME OF FILE TO
MOVE? appears.

2. Type the name of one of your practice files — say,
PROGRAM1.PIL — and press (Return). The prompt
INSERT SOURCE DISK, TYPE RETURN appears.

3. Place the diskette containing the file you want to duplicate in
the drive and press (Return]. The disk drive begins to read the
specified file on your source diskette. Then DOS prompts you
to INSERT DESTINATION DISK, TYPE RETURN.

4. Remove your source diskette from the disk drive and insert a
formatted diskette, then press (Return]. DOS writes the file it
has read from your source diskette to your destination disk-
ette.

How many times DOS prompts you to insert your source and
destination diskettes in your disk drive will depend on how large
your original file is. When the prompt SELECT ITEM OR
FOR MENU appears, the copying process is complete.

From One Diskette to Another With Two Disk Drives

1. With the DOS Menu on your screen, type C for COPY FILE
and press (Return). The prompt COPY — FROM, TO? appears.

2. Type the complete filespec for the file you want to copy, a
comma, and the filespec for the copy itself. For your practice
file PROGRAM1.PIL, type: D1:PROGRAM1.PIL,D2:PRO-
GRAM.PIL.

25

3. Make sure that the diskette containing your original file is in
Drive 1 and the diskette to which you are copying is in Drive 2.
Then press (Return).

DOS copies the specified file from the diskette in Drive 1 to the
diskette in Drive 2. When the prompt SELECT ITEM OR
FOR MENU appears, the copying process is complete.

Backing Up a File on the Same Diskette

Whether you have one drive or two, you use the COPY FILE
option on the DOS Menu to make a backup copy of a file on the
same diskette. Follow the steps outlined under ““From One Disk-
ette to Another With Two Disk Drives,’” but type the same drive
code for both the FROM and the TO filespecs and remember to
give the file a different name in the TO filespec. For example, if
you are copying your practice file PROGRAM1.PIL on Drive 1,
you might type D1:PROGRAM1.PIL,D1:PROGRAM1. BAK.

Using Wild Cards to Copy a Group of Files

Suppose you want to make backup copies of all four of your prac-
tice files — PROGRAM1.BAS, PROGRAM2.BAS, PROGRAMS3.
BAS, and PROGRAM1.PIL. You can use wild cards to copy all
four at once — a time-saving alternative to copying them one at a
time.

To use wild cards to copy all your practice files, follow the same
procedure you use to copy one file on your system, but use wild
cards when typing your FROM filespec (when using COPY FILE)
or your NAME OF FILE TO MOVE (when using DUPLICATE
FILE). To copy all four of your practice files, for example, you
would type PROGRAM?.* as the name of the files to be copied
— using the ? to stand for the numbers in all four filenames and
the * to stand for the extenders in all four filenames. If you are
using the DUPLICATE FILE option, DOS will tell you as it copies
each file.

See Section 3 for detailed examples of using wild cards when
copying files with COPY FILE and DUPLICATE FILE.

26

Erasing Files

You can erase a file from a diskette with the DELETE FILE(S)
function on the DOS Menu. Erasing out-of-date files, of course,
opens up space on your data diskettes for storing more informa-
tion. After a file is erased from a diskette, its filename disappears
from the directory for that diskette.

Caution: Use the DELETE FILE(S) function with care — it may
be permanent. Once you've erased a file, only under certain
conditions can you use the DISKFIX.COM utility to get it back.
(See the DISKFIX.COM section, Appendix L.)

For practice, try erasing the copy you made of your PROGRAM1.
BAS file. Place the data diskette containing the file in your disk
drive. Then follow these steps:

1. With the DOS Menu on your screen, type D and press {Return).
The prompt DELETE FILESPEC appears.

2. Type D1:PROGRAM1.BAS if your data diskette is in Drive 1,
or D2:PROGRAM1.BAS if it is in Drive 2, then press (Return).
The prompt TYPE “Y”’ TO DELETE... appears — thisis a
verification prompt, allowing you a chance to change your
mind about erasing the file.

3. Type Y and press to erase the file.

With wild cards in your filespec, you can erase as many files as
you wish in one operation. To try this, erase the two remaining
copies of files with the BAS extender on your diskette. Follow the
same procedure you use to erase one file, but when your com-
puter prompts you to enter the DELETE FILESPEC, type
D1:*.BAS (or D2:*.BAS if you are using Drive 2).

As DOS displays each filename matching your filespec, type Y
and press to delete that file. When you want to erase sev-
eral but not all of the files in a group that you specify with wild
cards, simply type N and press as the name of each file
that you want to preserve appears. This operation takes less time
than going through the entire DELETE FILE(S) procedure for
several individual files.

27

SECTION 3
SELECTING A
DOS MENJ OPTION

gcoboooobogogagooooo

To select a DOS Menu option:

1. Load DOS into your computer. (From BASIC, you can go to
DOS by typing DOS and pressing (Return).)

2. The Menu will appear on the screen, listing the 16 options
available.

DISK OPERATING SYSTEM Il VERSION 2.5
COPYRIGHT 1984 ATARI CORP.

DISK DIRECTORY FORMAT DISK

A. 1.

B. RUN CARTRIDGE J DUPLICATE DISK
C. COPYFILE K. BINARY SAVE

D. DELETE FILE(S) L. BINARY LOAD

E. RENAME FILE M. RUN AT ADDRESS
F. LOCKFILE N. CREATE MEM. SAV
G. UNLOCK FILE 0. DUPLICATE FILE
H. WRITE DOS FILES P. FORMAT SINGLE

SELECT ITEM OR FOR MENU
)

3. Type the letter corresponding to your selection and press
(Return).

4. A prompt will appear, listing the parameters you need to sup-
ply before DOS can perform the function you have chosen. A
parameter is additional information (sometimes optional)
specifying how the command is to operate.

29

5. The prompt SELECT ITEM OR FOR MENU appears
each time the computer system completes a request. If you
choose to select another item, type the letter for the option
you need and press (Return). The bottom half of the screen will
scroll upward to make room for the next option’s prompts. If

you press (Return), the screen will clear and redisplay the DOS
Menu.

If your computer system includes both a 1050 and an 810 Disk
Drive, or if you have and use files originally created and stored
using DOS 2.0S, see Appendix H for detailed information on
managing your files and diskettes with DOS 2.5. If you have files
formatted with DOS 3, see Appendix L.

A. DISK DIRECTORY

A Disk Directory is a list of the files on a diskette, showing the
filename, the extender (if any), and the number of sectors allo-
cated to each file. It will either display a partial list or a complete

list, depending on the parameters entered. Wild cards can be
used in the parameters.

With the SELECT ITEM OR FOR MENU prompt on the

screen, type A and press (Return]. The screen immediately dis-
plays this message:

DIRECTORY -~SEARCH SPECSLIST FILEY

If you press again, you will see a listing of all the files on
the diskette, the size (in sectors) of each file, and the number of
free sectors remaining on the diskette. The following example
shows the files in the directory of your DOS 2.5 System Diskette.

SELECT ITEM OF FOR MEHL
F
DIRECTORY --SERRCH SFECSLIST FILEY

30

Do >

—y
i
)

DF bl R L Y
FAMDISE oM gEs
SETUF SO By
COPYEZ COM B85
DISEFTH COM BEy

FES FREE SECTORD
SELECT ITEM OR FOR MERL

In the unlikely event that you use DOS 2.5 to store a file that oc-
cupies 1000 or more sectors on a diskette, the Disk Directory for
that diskette will show the file as occupying only 999 sectors.
Similarly, if there are more than 999 free sectors on a diskette,
the directory will show 999 + FREE SECTORS. This is not an
error; to maintain compatibility with programs written for DOS
2.0S, DOS 2.5 uses only three-digit numbers to indicate file
sizes.

Also, when you store files, DOS 2.5 uses the lowest-numbered
sectors on a diskette first. Since the earlier DOS 2.0S under-
stands a maximum of only 719 sectors, any file created using
DOS 2.5 that uses sectors humbered 720 or above cannot be
properly accessed by DOS 2.0S. When you use option A, DOS
2.5 displays the names of such ‘‘extended’’ files enclosed by
angle brackets. For example:

w01
w=0LIF -
FILEL TiaT
FILEZ DaT
<FILEZ DAT>
<FILE4 DATs &
SEe FREE SECTORELS

In this directory listing, the files FILE3.DAT and FILE4.DAT, which
use sectors of the diskette numbered 720 and above, are marked
with angle brackets. Note that the size of a file does not deter-
mine whether it is so marked or not. Also note that files occupy-
ing sectors 720 or above will normally, but not necessarily, be the
last files in a directory listing.

31

Parameters for the Disk Directory Option

As you can see from the entry prompt for the Disk Directory, this
command has two parameters, SEARCH SPEC and LIST FILE.

At this prompt, you can choose to search for a single file, several
files, or all files on the diskette you designate. If you do not indi-
cate a specific disk drive, DOS will assume that you want to see
the files on the diskette in Drive 1 (the default drive).

If you do not indicate a specific filespec, DOS will substitute the
default values of D1:*.* E: for the two parameters. The first de-
fault parameter, D1:*.*, tells DOS that you want to see a listing of
all the files on the diskette currently inserted in Drive 1.

The second default parameter, E:, tells DOS that you want all this
information to be displayed on the screen. Therefore, if you spec-
ify neither parameter and simply press (Retarn), DOS will list on
the screen all filenames and file sizes stored on the diskette in-
serted in Drive 1.

If you have a printer, you can print a copy of the directory by us-
ing a comma (,) for the first parameter and a P: for the second

parameter. In the example below, the data is printed for only one
file, DOS.SYS.

1. Type A and press (Return).

2. After the directory entry prompt appears, type DOS.SYS, P:
and press (Return].

3. Ifyou have a printer and it is on, a partial directory for Drive 1
will be printed on the printer instead of the screen. If you do
not have a printer (or it is not turned on), you will see an
ERROR-138 displayed on the screen.

On the hard copy from the printer, you will see:

oS SYEORET

i IR
7E3F FREE SECTORS

Each time the DISK DIRECTORY option completes a task, it
displays a SELECT ITEM OR FOR MENU prompt.

32

The following examples illustrate several different ways you can
use this option.

Note: When filenames are displayed, names and their extend-
ers are not separated by a period. However, when you want to
access a file, you must use a period between the filename and its
extender.

Example 1: Lists all files from Drive 1 diskette with .SYS
extender on the screen.

SELECT ITEM OR FOR MEHL
DIRECTORY--SERRCH SPEC, LIST FILEY
. 575

Example 2: Lists all files on Drive 2 diskette on the line printer.

SELECT ITEM OR FOR MEHLU
DIRECTORY-~SEARCH SPECs LIST FILET
I F

Example 3: Lists all three-letter filenames from the Drive 1 disk-
ette that begin with EO.

SELECT ITEM 0OF FOR MERLU
DIRECTORY--SESRCH SFEC, LIST FILET
EOT . %

Note 1: When you use the DOS 2.5 Disk Directory option to list
the files of a non-DOS disk, you may see a nonsensical listing for
the file directory. Commercial adventure games and bootable
game disks are examples of non-DOS disks. If this occurs you
should turn your computer off, then on again, with your DOS
System Disk in Drive 1 before performing any further DOS func-
tions.

Note 2: You cannot use the DOS 2.5 Disk Directory Option to
view the directory of a DOS 3 disk directly. See Appendix L, the
COPY32.COM section for converting DOS 3 files.

33

B. RUN CARTRIDGE

Whenever you select B, DOS gives control of your ATARI Com-
puter System to the inserted cartridge or to your computer’s
built-in BASIC, if any. If the BASIC cartridge is inserted or your
computer does have built-in BASIC, the screen displays a
READY prompt. If the Assembler Editor cartridge is inserted, the
screen displays an EDIT prompt. If you have not inserted a car-
tridge and your computer does not have built-in BASIC, the mes-
sage NO CARTRIDGE appears on the screen.

Warning: If you do not have a MEM.SAV file on your System
Diskette (in Drive 1) when you entered DOS, you will find that any
BASIC or assembly language program in memory before you
entered DOS is now gone. Your program cannot be recovered
now, unless you previously saved it on a diskette before you
called DOS. This loss of your program file happens when using
DOS 2.5 because you share the user program area with the Disk
Utility Package stored in the DUP.SYS file. The sharing of RAM
with DUP.SYS increases the amount of RAM available to the
user.

Example:

SELECT ITEM OF FOR MEHL
E

If the MEM.SAV file exists on the Drive 1 diskette, your BASIC or
assembly language program will automatidally be saved to the
diskette when you type DOS and press and then reloaded
into RAM when you return control to the cartridge. This is assum-
ing that the diskette in Drive 1 is the same diskette that was there
before you called DOS and that you did not invalidate MEM.SAV
by your use of COPY FILE, DUPLICATE FILE, or DUPLICATE
DISK. A prompt will appear to remind you that MEM.SAV can be
invalidated if you try to use any of these commands (see N.,
CREATE MEM.SAV, in this section).

34

C. COPY FILE

Use this option if you have two or more disk drives and want to
copy a file from a diskette in one disk drive to another diskette in
a second disk drive.

If your computer system includes both an ATARI 1050 and an 810
Disk Drive, you can copy files from the 1050 to the 810 only if you
first format the destination diskette on the 810 (or by using option
P., FORMAT SINGLE, on the 1050). Then you can copy as many
files as will fit on the single-density formatted diskette in your
810. You will not be able to copy any file that occupies more than
707 sectors, the capacity of a single-density diskette. If your
computer system includes both a 1050 and an 810 Disk Drive, or
if you have and use files originally created and stored using DOS
2.0S, see Appendix H for detailed information on managing your
files and diskettes with DOS 2.5. See Appendix L if you have
DOS 3 formatted diskettes.

There are two parameters associated with the COPY FILE com-
mand: FROM and TO. The first parameter, FROM, is usually a
filespec, which may or may not contain wild cards. The use of
wild cards in the first parameter gives you a very convenient way
of copying a group of files from one disk drive to another (see
Example 6). The /A option can be used with the second parame-
ter to allow the FROM file to be appended to the TO file. The
second parameter is generally a filespec, but can also be a desti-
nation device such as E: (screen), P: (printer), or D: (disk drive)
(see Examples 3, 5, and 6).

COPY FILE can also be used to create a backup copy of a partic-
ular file on the same diskette with the same filename but a differ-
ent extender, or even a completely different filename. If the file
you are copying under a new name is made up of several files
that have been appended (a ‘‘compound”’ file), the new version
of the file will be compressed; i.e., it will take up fewer sectors
than the original file from which it was copied.

If you attempt to copy a file when a MEM.SAV file is on your Sys-
tem Diskette, you will get a new prompt message. You will get the

35

new message after typing the source drive number (where the
information is coming from) and the destination drive number
(where the data is going). The message

TYFE S6%** IF 0K TO USE FROGRAM aRES

CRUTION: A ¢85 THUALIDATES MEM . Sl
appears to remind you that DOS can use all of the user program
area to speed up the copy file process. A Y notifies DOS that you
really don’t care about your user program area or MEM.SAV file
at this time — MEM.SAV will be invalidated. An N response tells
the DOS that it cannot put anything into the user program area. It
can only use a much smaller internal buffer to move your file. In
other words, your file will still be copied when you give an N re-
sponse, but it will take much longer.

You can also use this selection to copy the file listing to the
screen (E:) or the printer (P:)

Caution 1: Do not append tokenized BASIC files, i.e., files stored
with a SAVE command. Each tokenized file has its own symbol
table, and only the first file will be loaded. However, you can
merge two BASIC files stored with a LIST command, or two bi-
nary files created by the Assembler Editor cartridge or DOS.
(Tokenized and untokenized files are explained in Section 4)

Caution 2: Remember that in merge operations, files stored with
a LIST command that have matching line numbers could cause
the files to interfere with each other.

Example 1: Copies DOSEX.BAS from D1 to D2.

SELECT ITEM OF FOR MEML

:

CORPY—-—FROM: TO7V

Di:D0SES BAS. D2 DOSES | BaS

Example 2: Creates backup copy of file on same diskette.

SELECT ITEM OR FOR MEHML
C

COFY——-FROM: TOF

D1-D0SEs BAas: Dl IDSES | BaK

36

Example 3: Displays the program listing on screen.

SELECT ITEM 0OR FOR MEHLU
»

COFY-—FROMs TOF

Il DOSEY LSTHE:

Example 4: Copies any succeeding data into a file named
TEMP.DAT. Type data on screen that you want to be stored in
TEMP.DAT file. 3 terminates entry of data.

SELECT ITEM OR FOR MEHU

L
COFY——FROMs TOF
E:sD1:TEMP . DT

FETEFR

EILL
) R

STELE

Example 5: Lists the program listing DISEX.LST on the printer.

- SELECT ITEM OR FOR MERHU
L
CORY—--FROMs TOT
DI:-DISES LETaF:

Example 6: Copies all files from D1 to D2 except those having
- .SYS extender.

SELECT ITEM OR FOR MEHLU
- - (Return]

COFY--FROMs TOT

.o D2
Example 7: Appends PROG2 file on D1 to the PROGH file.

- SELECT ITEM OF FORE MEH
C
COPY-—FROMs TOTV
D1 PROGEs PROGT -5

D. DELETE FILE(S)

This option allows you to delete one or more files from a diskette
and the disk directory. Wild cards can be used in the filespec
names.

The verification prompt gives you a chance to change your mind
about deleting a file. If you append the /N option (No Verification
request) to the filespec entry, DOS will eliminate this verification
step (see Example 3).

You can also delete all files on a diskette but leave the diskette
formatted. Example 4 illustrates the steps for deleting all the
existing files on the diskette in Drive 1. Note that the /N option is
used in this example so the verification request does not need to
be answered for each file on the diskette. It you try to delete a
locked file, the screen will display ERROR-167 (File Locked).

Example 1: Deletes all files on Drive 2 diskette that begin with
REM and that have a .BAS extender, with a verification prompt
for each such file.

SELECT ITEM 0OF FOR MEHL
T (Rewrn)

T DELETE .

TYPE “v" TO DELETE . . |
TEMF . DT

38

Example 3: File will be deleted without requesting verification.

SELECT ITEM OF FOR MEHL
D
DELETE FILE SPEC
DO=Es Brs oM
Example 4: Deletes all files from the Drive 1 diskette.
SELECT ITEM OR FORE MERML
I

DELETE FILE SPEC
. w .M

E. RENAME FILE

This option allows you to change the name of one or more files.

... e are two parameters, OLD NAME and NEW, for this option.

The parameter OLD NAME is always a complete filespec. If you
do not specify a device number, the computer assumes D1: (the
default). The NEW parameter refers simply to the new filename.
The device number is automatically the device specified in the
OLD NAME parameter. If there are any illegal characters in the
NEW parameter, the name of the renamed file will consist of the
characters up to, but not including, the illegal character.

You can use wild cards in both the first and second parameters
(see Example 2). However, if you use one or more wild cards in
the OLD NAME, they must at least be matched by number and
position in the NEW filename. The following examples of legal
and illegal filenames entered in response to the GIVE OLD
NAME, NEW prompt illustrate this point:

LEGAL: TEZ T« HEL
TEZT #aMEL . #®
. DT DRk
. FTlemw YT
TESTE DETFILEY . ®
TESTE DATFILEs

39

Note that it is legal to use more wild cards in the NEW filename
than in the OLD name; in such a case, the filename characters
are copied from the OLD name unchanged. Thus the last legal
examples shown above would both produce the same result as
entering TEST3.DAT,FILE 3.DAT.

Remember that every file on a given diskette should have a
unique filename. If you rename a single file without using any
wildcards, DOS 2.5 allows you to give it any valid filename, in-
cluding a name already assigned to a file on the same diskette.
Then, if you try to work with one of the two files (for example, to
delete it, lock it, etc.) DOS will act on both files. However, DOS
2.5 offers you a solution to this problem. If you find that you have
two files with the same filename on one diskette, use the RE-
NAME FILE option without any wild cards in either the OLD or
NEW filename — DOS 2.5 will rename only the first file it find.
that matches the OLD NAME you have specified. (See also the
DISKFIX.COM section, Rename File By #, in Appendix L.)

If you attempt to rename a file on a write-protected diskette, an
ERROR-144 (Device Done Error) will appear on the screen. If you
try to rename a file that is not on the diskette, an ERROR-170
(File Not Found) appears. If the screen displays ERROR-167, it
means that you tried to rename a locked file (see F., LOCK FILE).

Example 1: Changes the file on Drive 2 from TEMP.DAT to
NAMES.DAT.

SELECT ITEM OF FOR MEHU
E - GIUE OLD MAME. HEL

FoDATs HAMES . DaT

Example 2: All files on Drive 1 with extender 8KB have their
extenders changed to .BAS

ECT ITEM OF FOR MEML

REMAME ~ GIVE OLD HAME: HEL
w. S Hew BAS

F. LOCKFILE

Use this selection to write-protect a single file. A locked file can-
not be written to, appended, renamed, or deleted. An ERROR-
167 will result from trying to write to a locked file. You can use
wild cards to lock several files at the same time.

A locked file will appear on the Disk Directory with an asterisk (*)
preceding its name. Do not confuse this asterisk with a wild card.

Warning: If you lock any files on the Disk Directory and then
format the diskette, the locked files will still be obliterated.

Example 1: Locks the DOS.SYS file on Drive 1.

SELECT ITEM OF FOR MEHL

F
HHAT FILE TO LOCEY
DOS | SYS

Example 2: Locks all files on Drive 1 with an extender of .BAS.

SELECT ITEM OR FOR MEHLU
F

HMHAT FILE TO LOCET

01w BAS

Example 3: Locks all files on Drive 1 that begin with T.

SELECT ITEM OF FOR MEMU
F

WHAT FILE To LOCKT

Tw . #

Example 4: Locks all Drive 1 files.

SELECT ITEM OR FORE MERL
F
HHAT FILE TO LOCET

41

G. UNLOCKFILE

Use this option to unlock a file or files you previously locked us-
ing option F. When you complete this option, the asterisk preced-
ing the filename in the Disk Directory (to indicate the file was
locked) will no longer appear when you execute a DISK DIREC-
TORY command (DOS Menu option A.). Wild cards can be used
in the filespec names.

Example 1: Unlocks DOSEX.BAS file on Drive 1.

Return

Example 2: Unlocks files beginning with the letter T on Drive 1.

Example 3: Unlocks all five-letter files on Drive 1 beginning with
PROB and having a .DAT extender.

H. WRITE DOS FILES

To write DOS 2.5 files onto a diskette, you must have previously
formatted the diskette using DOS 2.5 or DOS 2.0S (see |., FOR-
MAT DISK). The diskette on which DOS is to be written can be
inserted in the disk drive of your choice.

As soon as the DOS files have been written to the diskette, the
screen is cleared and both the menu and the prompt SELECT
ITEM OR FOR MENU are redisplayed.

42

If you try to write a new DOS file onto a diskette that has been
write-protected, you will get an ERROR-144.

sELECT ITEM OF Fidk MERL
H
DETVE TO WEITE DO FILES TOT

1 (Rewrn)
B

ey gy IR

PE B9 T MEITE DO TO DRIVE L
EITIHG MEL Inds FILES

I. FORMAT DISK

Ordinarily, this option is used to format a diskette in enhanced
density, provided you are using an ATARI 1050 Disk Drive. How-
ever, when executing this command DOS 2.5 will automatically
switch to single-density formatting if it finds that the drive you are
using is an ATARI 810 (which can format diskettes and manage
information only in single density).

Option P. on the DOS 2.5 Menu, FORMAT SINGLE, can be used
to ““force’’ a 1050 Disk Drive to format a diskette in single density.

The diskette to be formatted can be blank or have files on it that
you no longer want. Formatting writes information on the diskette
that allows data to be stored and retrieved.

A diskette formatted with this option using a 1050 Disk Drive is
capabile of storing information in 1023 sectors, while a diskette
formatted in single density can store information in 719 sectors.
However, the formatting process itself reserves some sectors for
the exclusive use of DOS. So a diskette newly formatted in single
density will show (in a directory listing) only 707 FREE SEC-
TORS, and in enhanced density 999 + FREE SECTORS. There
are actually 1010 sectors available in enhanced density, but DOS
2.5 uses three-digit numbers only for the sake of compatibility
with DOS 2.0S.

43

If your computer system includes both a 1050 and an 810 Disk
Drive, or if you have and use files originally created and stored
using DOS 2.0S, see Appendix H for detailed information on
managing your files and diskettes with DOS 2.5. If you want to
use files originally formatted with DOS 3, see Appendix L. Re-
member to label your diskettes clearly with the version of DOS
used to format each one.

The example below illustrates Drive 1 as the drive to be format-
ted; however, you can specify any drive. If you try to format a
diskette containing bad sectors, the screen will display an
ERROR-173 (Bad Sectors at Format Time). If DOS gets a mes-
sage from the disk drive that the diskette has bad sectors, it will
keep trying to format the diskette. If this happens, it may take up

to 15 minutes trying to format a diskette before returning an
ERROR-173.

If a diskette is new and has bad sectors, you should return it to
the supplier for exchange.

SELECT ITEM OF FOR MEHL
I

WHICH DRIVE TO FORMETT

1

THYFE "% TO FORMET DISK 1

I

" (Feturn)

—

Warning: Formatting a diskette always destroys all files and
format previously existing on the diskette.

J. DUPLICATE DISK

Use this menu option to create an exact duplicate of any disk-
ette. You can use this option with a single disk drive by manually
swapping source (diskette with files on it) and destination (disk-
ette on which you are putting files) until the duplication process is
complete. You can also use this option with multiple disk drive
systems by inserting source and destination diskettes in two
separate drives and allowing the duplication process to proceed
automatically.

44

Unlike the same function of the earlier DOS 2.0S, DUPLICATE
DISK in DOS 2.5 will format your destination diskette. However,
keep in mind that you cannot duplicate an enhanced-density
diskette using an ATARI 810 Disk Drive as your destination drive.
If your computer system includes both a 1050 and an 810 Disk
Drive, or if you have and use files originally created and stored
using DOS 2.0S, see Appendix H for detailed information on
managing your files and diskettes with DOS 2.5. See Appendix L
if you want to use files formatted with DOS 3.

The duplication process is a sector-by-sector copying technique.
This means that not only are all your files copied from the source
to the destination diskette, but they are also located in the same
sector number on both diskettes. The directory of the source
diskette is also copied onto the destination diskette. For this
reason, any files previously stored on the destination diskette will
have been destroyed when the duplication process is complete.
So if you use an old diskette for the destination diskette, be sure
that none of the files on it are valuable.

You should always save BASIC or assembly language programs
that are currently in RAM before attempting to duplicate a disk-
ette. There is no internal buffer for DUPLICATE DISK as there is
for the COPY FILE command, and MEM.SAV (if in use) will be
invalidated if you give DOS permission to proceed (and to use
the program area). The DUPLICATE DISK option always uses
the program area (where a RAM-resident BASIC program is
stored) as a buffer for moving the files on the source diskette to
the destination diskette.

Duplication Using a Single Disk Drive

In a single disk drive system, the source and destination drives
are both Drive 1 (see example).

Always write-protect your source diskette as a safety measure.
Then, if itis accidentally inserted in place of the destination disk-
ette, the screen will display an ERROR-144, and your source
diskette will still be intact.

45

If you type any character other than Y and press inre-
sponse to the TYPE ““Y’’ IF OK TO USE PROGRAM AREA mes-
sage, the program aborts and the SELECT ITEM OR FOR
MENU prompt appears on the screen.

Here is an example of duplication using a single disk drive:

SELECT ITEM OF i MERL

!

DUF DISE-S0URCE. DEST DRIUEST

11

THEERT SOURCE DISE. TYPFE RETURH
THSERT DESTIMHATION DISKs TYFE RETURH

Note: The number of times the DUP program prompts you to
insert the source and destination diskettes depends on the num-
ber and size of the file(s) to be duplicated for a given system and
the amount of RAM in the system.

Duplication Using Multiple Disk Drives

If you are using both the ATARI 810 and ATARI 1050 Disk Drives,
make sure you distinguish between files stored using the single-
density and enhanced-density formats when labeling the disk-
ettes. This will keep you from using them in the wrong disk drive,

For a multiple disk drive system, it is also necessary to save a
RAM-resident BASIC program, as the user’s program area will
be altered and MEM.SAV will be invalidated. Notice that the
source diskette is inserted in Drive 1 and the destination diskette
in Drive 2.

This process can take several minutes if the source diskette is
almost full.

SELECT ITEM OF FOR MERML
1 [Beturn
DUF DISE-S0URCE: DEST DRIVES

i BOTH DISKESs TYFE RETURH

46

K. BINARY SAVE

Note: This option will probably not be used by a beginning
ATARI Computer user. Unless you understand hexadecimal num-
bers and have some knowledge of assembly language, you may
not wish to read the information beyond the first example.

Use this Menu selection to save the contents of memory loca-
tions in object file (binary) format. Programs written using the
Assembler Editor cartridge also have this format. The parame-
ters for this selection—START, END, INIT, RUN—are hexadeci-
mal numbers. The START and END addresses are required pa-
rameters for any binary file or program. The INIT (initialize) and
RUN addresses are optional parameters that allow you to make
any program execute on loading. See Examples 2, 3, and 4 be-
low.

In the example below, a file to be called BINFIL.OBJ with the
starting address 3C00 and the ending address 5BFF is saved on
a diskette in Drive 1.

Example 1:

SELECT ITEM OR FOR HMERU
i
SAUE-GIUEFTLE«STaRET
BIMFIL . ORJs 23

D TR T s BLIM G

|

Advanced User Information About
Optional Parameters

All binary files, like those you would create with the BINARY
SAVE option or with the Assembler Editor cartridge, have a com-
mon six-byte header that precedes the file. From the header data
shown in the table, you can easily pick out the starting address
and ending address that was used in the example above.

The two optional parameters, INIT and RUN, offer the means to
make a binary assembly language file execute automatically
after loading. A file that makes use of either or both of these ad-
dress parameters is called a “‘load-and-go”’ file. A file that does
not contain data for these parameters is called a “‘load’’ file,

47

since it loads into the computer but will not execute until a RUN
AT ADDRESS command is given.

Header Decimal Hex
Byte# Number Number Description
#1 255 FF Identification code for
#2 255 FF binary load file
#3 0 00 Starting address (LSB)
#4 60 3C (MSB)
#5 255 FF Ending address (LSB)
#6 91 5B (MSB)
File data segment contains
8192 (Dec) bytes of data.

In general, the RUN address parameter defines the pointin a
program where execution will begin as soon as a whole file is
loaded into RAM (i.e., when End of File is reached). For this rea-
son there can only be one effective RUN address even if a file is
a compound file. For example, a file could be made up of several
small files appended together with each of the original small files
having their own RUN address. In this case, only the last RUN
address to be loaded would execute. *

If an INIT address is specified, then as soon as the actual ad-
dress gets loaded into RAM, the code that it points to will be exe-
cuted. This is true even if the file is made up of several load-and-
go files appended together. In such a case, each load-and-go
segment that has an INIT address specified will be executed
when the INIT address is loaded. Thus, each segment would
load and be executed before the next segment would be loaded,
etc.” * Execution of code pointed to by any INIT address always
precedes the execution of any code pointed to by a RUN
address.

Files created by the Assembler Editor cartridge using the load-
and-go option can be stored in the desired INIT and RUN ad-

dresses in your code followed by the code to be controlled. The
RUN address is always stored in Locations 2E0 (LOW) and 2E1

“An RTS (RETURN) at the end of a program will always return control to DOS.
**Each code segment must end with an RTS (RETURN) if the next segment is to
be loaded or, if desired, returned to DOS control.

48

(HIGH) Hex. The INIT address is always stored in Locations 2E2
(LOW) and 2E3 (HIGH) Hex. Remember, the INIT address is exe-
cuted as soon as it is loaded, so the code that it points to must
have been previously loaded.

Note: IOCB #1 is open during the execution of code pointed to
by any INIT address. For this reason it is not available and must
not be tampered with by the user program being executed.

Using Binary Save With Optional Parameters

The example below illustrates an assembly language program
that uses a data area that must be initialized before the main
program can use it. Suppose the initialization code resides from
address 4000 (Hex) to 41FF (Hex) and the main program resides
between 4200 (Hex) and 4FFF (Hex). For purposes of illustration,
assume that both the initialization code and main program con-
tain executable code and the initialization code ends with an RTS
(RETURN).

In the following example, it is assumed that the program
LAGPRG.OBJ is already in memory.

Example 2:

SELECT ITEM OR FOE HMEHL

K

EEUE-GIUE FTLE s STHET s EMNDCs THIT R
LAGPREG . OB 408088« 4F 7w < 2 EE (Return)

The following events will occur on loading this file into memory:

1. Memory from 4000 to 4FFF will be filled with the program.

2. The INIT address 4000 (Hex) is stored in Memory Locations
2E2 and 2E3 (Hex).

3. Initialization program from 4000 to 41FF will execute.

4. The RUN address 4200 (Hex) is stored in Memory Locations
2E0 and 2E1 (Hex).

49

5. Main program from 4200 to 4FFF begins to execute and will
continue to do so until a RETURN (RTS) is executed, or a

or occurs.

In the case of compound files, the result is more complicated,
depending on how the now appended files were created. The
next section illustrates several cases where files have been ap-
pended.

Structure of a Compound Binary File

Before considering the next example, look at the structure of a
compound file. A compound file is constructed of various binary
files that have been appended together. You can create com-
pound files in one of two ways. One way is to use the COPY FILE
option with its append option. A compound file created with this
command is not compatible with the Assembler Editor loader,
although it can be loaded using the BINARY LOAD option of
DOS. If compatibility with the Assembler Editor cartridge is de-
sired, an alternate way to create a compound file is to use the
BINARY SAVE option. (To do this, you must tell DOS the name of
the file you are appending to, followed by the /A option—see
Example 5.) The two types of files are illustrated in Appendix |.
The only real difference is that the FFFF (Hex) identification code
is included with every segment when a compound file is created
using COPY FILE.

When BINARY SAVE is used, the additional identification codes
for each segment (after the first one) are not included in the final
file. This is the only form of compound file that is compatible with
the LOAD command of the Assembler Editor cartridge. The BI-
NARY LOAD option of DOS, however, is compatible with both
types of compound files.

Now consider what happens when a compound file like this is
loaded—supposing various INIT and RUN addresses were spec-
ified for each of these files before they were appended. (It will
help you to think of the INIT and RUN addresses as being part of
the data in each segment, which they essentially are.)

50

Example 3:

Suppose you have three files, each of which has a RUN address
but no INIT address included in its data. This example shows one
way a file of this type might be created.

SELECT ITEM OR FOR MEHLU
K

SEUE-GIVE FILEs STERTsEMDICs IMIT s RLHD
PERTL . OE.Js 2000, 21FF » » 2000

SELECT ITEM OF FOR MERL
k
SHVE-GIUE FILEsSTART«EMDC s INIT LM
FART2 OB 2208 22FF s » 2288
The other two files, PART2.0BJ and PART3.0BJ, that are cre-
ated the same way as PART1.0BJ can then be merged into
WHOLE.OBJ by using the BINARY SAVE or COPY FILE option
with the append option. When this new file is loaded—
1. PART1.0BJ loads, but does not execute (no INIT).
2. RUN address for PART1.0BJ is stored in 2E0 and 2E1.
3. PART2.0BJ loads, but does not execute (no INIT).

4. RUN address for PART2.0BJ is stored in 2E0 and 2E1, which
overwrites PART1.0BJ RUN address.

5. PART3.0BJ loads, but does not execute (no INIT).

6. RUN address for PART3.0BJ is stored in 2E0 and 2E1, which
overwrites PART2.0BJ RUN address.

7. Execution begins at RUN address of PART3.0BJ, since you
are now at the end of the file.

51

Example 4:

For another example of a compound file, consider a three-
segment file, BIGFILE.OBJ. Suppose each segment loads into a
different area of memory and that—

SEG1.0BJ has an INIT address, but no RUN address;
SEG2.0BJ has no INIT or RUN address;

SEG3.0BJ has an INIT address, and a RUN address for
SEG2.0BJ and, in addition, is loaded on top of SEG1.0BJ.

When BIGFILE.OBJ is loaded, the following events occur:
1. SEG1.0BJ is loaded.

2. SEG1.0BJ executes starting at its INIT address.

3. SEG2.0BJ is loaded.

4. SEGS.0BJ is loaded on top of SEG1.0BJ.

5. SEG3.0BJ executes starting at its INIT address.

6. SEG2.0BJ executes starting at the RUN address specified in
SEG3.0BJ.

Clearly, this option gives you great power and flexibility for creat-
ing large files that load and execute immediately.

Example 5:

To convert an existing load-only file to a load-and-go file, you can
load the file into memory and then save it under a new filename
using the BINARY SAVE Menu option. This poses some prob-
lems, as you can sometimes forget the final address the file oc-
cupies, or the file could be compounded with the segments not
necessarily consecutive in memory. Therefore, the new file
would take up more space on the diskette than the old, etc. You
can avoid these problems by using the procedure shown in the
following example. This example illustrates a load file with a run
address of 4000 Hex that is changed to a load-and-go file.

52

In the example, a one-byte file located at FFOQ (inthe OSROM) is
appended to the end of your file LOADFIL.OBJ. Since this file’s
run address is the same as the address at which your load file
normally runs, your load file begins execution as soon as the
entire appended file is loaded into RAM.

SELECT ITEM OF FOR MEHLU

k

SAUE-GIVE FILEs START«EHIC s IMITy RUHS
LOADFIL OB s FFO0. FFO0 s » 000

L. BINARY LOAD

Note: This instruction will probably not be used by a beginning
ATARI Computer user.

Use this selection to load into RAM an assembly language (bi-
nary) file that was previously saved with menu option K. or cre-
ated by the Assembler Editor cartridge. If the RUN address or
INIT address was appended to the file in Locations 2EO0 and 2E1
or 2E2 and 2E3, the file will automatically run after being en-
tered. In a load-and-go file, INIT and RUN addresses are ignored
when you type /N after the filename (see Example 1). The file can
then be run using the RUN AT ADDRESS menu option.

To execute a file that has no appended RUN or INIT address, see
the next menu option, M., RUN AT ADDRESS.

Example 1:
SELECT ITEM OR FOR MEHU
L

LOAD FROM WHAT FILEST
MYFILE . (. JeH

The use of this option without the /N option is shown in Example
2. Since this file had the starting address in Locations 2E0 and
2E1 appended to it (see Example 1 for K. BINARY SAVE), the file
will begin executing as soon as the load is complete.

53

Example 2:

SELECT ITEM OR FOR MEMU
L

LOAD FROM WHAT FILET

EIMFIL . OF.

Example 3 illustrates a file called MACHL.OBJ that does not
have a RUN address or an INIT address. In this case, the
SELECTITEMOR FOR MENU prompt will display on the
screen as soon as the file finishes loading.

Example 3:

SELECT ITEM OF FOR MEHU
L

LOAD FROM WHAT FILET

MACHL OR.

M. RUN AT ADDRESS

Note: This instruction will probably not be used by a beginning
ATARI Computer user.

Use this selection to enter the hexadecimal starting address of
an object file program after you have loaded it into RAM with the
BINARY LOAD selection. This selection is used when the start-
ing address has not been appended to the object file.

In the example below, the instructions at hexadecimal Location
3000 will begin executing. Be very careful when entering these
hexadecimal address locations. If you enter an address that
does not contain executable code, it will create problems. For
example, you could lock up the system, making it necessary for
you to reboot.

SELECT ITEM OF FOR MEML
L

RUM FROM WHET &DDRESST

TR

54

N. CREATE MEM.SAV

This option allows you to create a file on diskette called
MEM.SAV into which the contents of lower user memory are
saved whenever you call DOS. When you type DOS (Return), the
computer saves the contents of lower user memory, including the
RAM-resident user program (if any), in the MEM.SAV file before it
brings the diskette file DUP.SYS into RAM. When you have fin-
ished using the DOS options, you simply return control to the
cartridge by typing B (Return], and MEM.SAV will automatically
reload the portion of your program that was replaced by
DUP.SYS into RAM. If you are not using a cartridge, typing B has
no effect. You will have to respond to the SELECT ITEM OR

FOR MENU prompt.

You must be careful not to allow DOS to use all of user memory
when you want the COPY FILE, DUPLICATE FILE, or DUPLI-
“ATE DISK options for saving the existing data. DOS does not
+ifall or only part of your program has been saved in
VIE..1.SAV. When DOS utilizes all of user memory, it automati-
cally invalidates the MEM.SAV file. If this occurs, your program
will not be reloaded when control is returned to the cartridge.

Here are the steps for creating a MEM.SAV file on a diskette
inserted in Drive 1. Note that MEM.SAV files can only by created
on a diskette in Drive 1.

SELECT ITEM OF FORE MEHU
H
TYFE "Y' TO CREATE MEM. Sgu

If you attempt to use this option to create a MEM.SAV file on a
diskette that already has a MEM.SAV file, the screen will display
the message MEM.SAV FILE ALREADY EXISTS and follow it
with the prompt SELECT ITEM OR FOR MENU.

Why Have a MEM.SAV File?

This special file allows you to save your RAM-resident program
temporarily in a special file on diskette. To be effective,
MEM.SAV (which requires 45 sectors) must be on the diskette

55

inserted in Drive 1. This diskette must not be write-protected if
MEM.SAV is to work. Once MEM.SAV exists on your diskette,
then the area of user memory to be overwritten by DUP.SYS will
be stored in MEM.SAV every time DOS is called. Essentially, you
are performing a ‘‘swap-contents’ operation, thereby “expand-
ing’’ your user program area. When you return control of the
computer system to the cartridge, the DUP.SYS file is in turn
overwritten as the contents of MEM.SAV are loaded back into
RAM automatically.

If you are working on a BASIC program and need to return to
DOS for some reason, you can do so using MEM.SAV without
having to save your program to diskette and reenter it. When you
finish using DOS and return control of the computer system to
BASIC, the MEM.SAV file is automatically reloaded into memory
and your BASIC program is restored into user program memory.

Note: MEM.SAV is most time efficient when used with the ATARI!
130XE and the RAMDISK option (see Appendix K). In other
cases, it may by faster to SAVE your program before calling up
DOS, then LOAD it upon returning to BASIC.

Here is an example of MEM.SAV usage:

1. Type LOAD “‘D:MYPROG. BAS’’ (Return).

2. Edit your program and then type RUN (Return). It works, and
you want to RENAME the original file to keep as a backup
copy.

3. Type SAVE “‘D:MYPROG.NEW’’, then press (Return).

4. Type DOS (Return).

5. Next type E (for RENAME FILE) MYPROG.BAS, MYPROG.
OLD, and press (Return).

6. Type E and press (Return]. Then type MYPROG.NEW, MY
PROG.BAS and press again.

7. To return to BASIC, type B (for RUN CARTRIDGE).

56

Using MEM.SAV to Write Assembly
Language Programs

The MEM.SAV file also allows you to write assembly language
programs (or load in binary data) that share the user program
area with DUP.SYS. This means you are free to write programs or
load data in the area from LOMEM (which fluctuates with the
number of drives in the system and the number of files that can
be open concurrently) to HIMEM (which fluctuates depending on
which graphics mode you are in). See Appendix D, Memory Map.

Example:

Suppose you have a binary file you want to execute automati-
cally as soon as it is loaded. This type of file is called a load-and-
go file. The run address is already programmed into such a file
and you will not need to select the RUN AT ADDRESS option. In
this case, it is not necessary to have a MEM.SAV file on your
diskette. Since the file is load-and-go, it will simply load and then
begin to execute. The safest way to get back to DOS is to reboot
your computer. If you have not overwritten the DUP.SYS program
during the execution of your binary file, then you can recover by
simply executing a RETURN (RTS) in your program. If a binary
file overwrites DUP.SYS during the time it is loading, DOS will
keep track of this fact and will automatically reload and execute
DUP.SYS after the RETURN in your program is executed.

Warning: If the execution of your load-and-go file writes into any
areas below LOMEM used by DOS.SYS or DUP.SYS or a RAM
area used by the Operating System, the RETURN (RTS) from
your program may leave the computer in an undefined state.
Should this occur, you may have to power up the computer again
to recover.

Using MEM.SAV to Load Binary Files

This section deals with loading a binary file that is not to be exe-
cuted at the same time it is loaded, or loading a file that contains
data for another program. If your LOAD file does not overlay any
part of the DUP.SYS area, then a MEM.SAV file is not required.

57

If your LOAD file overlays any part of the DUP.SYS file, you must
have a MEM.SAV file on the diskette in Drive 1 if the load is to be
successful. If you do have MEM.SAV, the following actions take
place after you execute LOAD BINARY FILE option:

1.
2.

You use the LOAD BINARY FILE selection to load your file.

Your original MEM.SAV is loaded from disk into memory, over-

laying and invalidating DUP.SYS.

. Your file is loaded on top of the original MEM.SAV, modifying

part or all of the original MEM.SAV file.

Your new MEM.SAV file in RAM is saved in the MEM.SAV

area on the diskette.

5. DUP.SYS is reloaded from diskette into memory.

6. You remain in DOS until you choose to:

58

RUN CARTRIDGE

RUN AT ADDRESS

LOAD BINARY FILE

at which time your file is loaded into
memory from MEM.SAV and you
come up under the control of your
BASIC or Assembly Language
cartridge;

at which time your file is loaded into
memory from MEM.SAV and you
begin execution of whatever code is
at the address you specified; or

where you wish to load a load-and-go
file. In this instance, if the new file
also overlays a part of DUP.SYS, but
not the original file, then both
MEM.SAV and your new file will now
be in memory when the load is com-
plete. If the new file does not overlay
DUP.SYS at all, then the load will
complete with only the new file

loaded into RAM. Since the new file is

a load-and-go and loaded whether
DUP.SYS is overlaid or not, you will
come up under the control of this file
untila RETURN (RTS) is executed.

Note: If you wish to have two files in memory simultaneously,
one of which resides wholly or in part in the DUP.SYS area and
the other of which resides wholly outside of the DUP.SYS area,
simply merge the two files into one file, then load the newly
merged file.

O. DUPLICATE FILE

This option (shown in Example 1) is used if you have only one
disk drive and want to copy a file from one diskette to another.
Remember that a single disk drive must always be set up as
Drive 1. Since there is only one disk drive, you must manually
insert and remove the source and destination diskettes. If a file is
very long, you may have to alternate the source and destination
diskettes several times before the duplication process is
complete.

Example 1:

SELECT ITEM OF FOR MEMU

i

HAME OF FILE To MOUEST

DOSEX . BaS

INSERT SOURCE DISKs TYPE RETURH
THSERT DESTIMATION DISK: TYFE RETURH

Wild cards are available with this option. In Example 2 you will
notice that even when using wild cards, your files are still copied
one at a time. You will have to alternate diskettes at least once for
each file that you want to copy.

Example 2 illustrates using a wild card to copy files having five-
letter filenames beginning with TEST from one diskette to an-
other. It is assumed that the source diskette has only two files
with names that satisfy TEST?.

59

Example 2:

SELECT ITEM 0OR FOR MEHL
Ll

MAME OF FILE TO MOUET

TEST?

IHSERT SOURCE DISKs TYFE RETURH

Return

COFYIMG---01 - TEST1
THSERET DESTIMATION DISK:TYFE RETLURH

Return

MHZERET SOURCE DISE: TYFE RETURH

Return

COPYIMG---T11:TEST®
IHSERT DESTIMATION DISE: TYFE RETURH

THEERT SOURCE DISE.TYFE RETURH

tn Example 3 both the filenames and extenders have been re-
placed with wild cards. DOS will therefore copy all files except
those that have an extender of .SYS. It is assumed that only
three files are to be copied: MEM.SAV, TEST1, and TEST2.

Note: Creating MEM.SAV on the new disk is faster than
copying it.

Example 3:

SELECT ITEM OR FOR MEHL
x

MAaME OF FILE TO MOUE?T

E

TMZERT SOURCE DISKs TYFE RETURH

60

COPYIMG-D1 :MEM . Sal
IMSERET DESTIMATION DISKE:TYFE RETURH

Return

HI

FE
Return
COFYIHG---T : TEST

THEZERET DESTIMATION DISKsTYPE RETURH

BT SOURECE DISK.TYFE EETURH

THZERT SOURCE DISKSTYFE RETURM

CORFYIMG---D1 - TESTE
THSERT DESTIMATION DISESTYFE RETURH

Return

IMEERT SOURCE DISES TYPE RETURH

Return

P. FORMAT SINGLE

Use this option to format a diskette in single density. If you have
only an ATARI 1050 Disk Drive, you must use this option, rather
than option |., FORMAT DISK, on the DOS Menu to format a disk-
ette in single density.

Remember that formatting will erase any files or other data al-
ready stored on a diskette.

The procedure for using FORMAT SINGLE is just like that for
using FORMAT DISK:

SELECT ITEM OF FoR MEHL
WHICH DREIUVE TO FORMATY

1

TYPE "Y"Y TO FORMAT DISE 1

61

SECTION 4
USING BASIC
COMMANDS WITH
DOS 2.5

pouoobtuougooooboogooao

BASIC Commands Used With DOS

Before learning about the BASIC commands used with DOS 2.5,
you need to know how the commands will act on programs being
stored and retrieved. The foliowing paragraphs explain the two
types of files that can contain BASIC programs.

Tokenized and Untokenized Files

The first type of file, called “‘untokenized,”” contains standard
ATASCII text characters, so it looks like a printout of a BASIC
program. These programs do not retain their symbol tables each
time they are loaded and saved. The symbol table associates the
variable name with the memory location where the values for that
variable are stored. To store and retrieve a file in its untokenized
form, you use the LIST and ENTER commands.

A tokenized file is a condensed version of a BASIC program. kit
has one-byte tokens instead of the ATASCI| characters to repre-
sent the BASIC commands. You can move tokenized programs
back and forth between the disk drive and computer memory
using the SAVE and LOAD commands. Tokenized versions of a
file are generally shorter and load faster than untokenized ver-
sions. For this reason, many programmers prefer to store their
programs in the tokenized form.

Usually during program development the symbol table becomes
cluttered with unused variable names. If you use a variable in a
program line and then change the variable name or delete the
line, the original variable name remains in the symbol table. Use
the following procedure to clear the symbol of all unused names.

63

1. LOAD your program (see LOAD below).

2. LIST itto disk (see LIST below).

3. Type NEW (Return).

4. ENTER your program from disk (see ENTER). The symbol
tabie now contains only those variable names presentin the
program.

LOAD (LO.)

Format: LOAD filespec
Example: .05 "1 Df

W BEE

This command is used to load a file from a particular diskette in a
disk drive into the user program RAM area. Before you can use
this command to load a file called DOSEX.BAS, the file (DOSEX-
.BAS) must have been previously saved using the BASIC com-
mand SAVE. This command loads only a tokenized version of a
program.

This command can also be used in ““chaining’” programs. If a
program is too big to run in your available RAM, you can use the
LOAD command to spread the program across two files. Simply
type the LOAD statement as the last line of the first program file,
as shown in the example following this paragraph. When the
program encounters the LOAD statement, it will automatically
read in the next part of the program from the diskette. The sec-
ond program file must be able to stand alone without depending
on any variables or data in RAM from the first program file. The
loaded program will not execute until you type RUN and press
(Return], at which time the previous program and any variables will
be cleared (see RUN for another example).

SAVE (S.)

Format: SAVE filespec
Example: SiilE "D F

64

This command causes the computer system to save a program
on diskette with the filespec name designated in the command.
SAVE is the complement of LOAD and stores programs in to-
kenized form.

LIST (L.)

Formats: LIST filespec ,lineno ,lineno
device
Examples: i. |

One use of the LIST command in BASIC is very similar to the
SAVE command: it can take a program from user program RAM
and store it on a particular drive with any name you want to as-
sign it (illustrated by the first example). However, the program is
stored in standard ATASCII text and not as tokens. Differences in
the formatting of data storage also allow LIST to be much more
flexible than SAVE. As shown in the above format examples, you
can specify a single device (e.g., P:, E:, C:, D:, D2, etc.), or you
can specify line numbers to be listed to a designated device
(e.g., “‘P:”’, 100, 200).

ENTER (E.)

Format: ENTER filespec
Example: EHTER 1L

LET

This command causes the computer to move a file on diskette
with the referenced filespec into RAM. The program is entered in
untokenized form and is interpreted as the data is received. EN-
TER, unlike LOAD, will not destroy a RAM-resident BASIC pro-
gram, but will merge the RAM-resident program and the disk file
being loaded. If there are duplicate line numbers in the two pro-
grams, the line in the program being entered will replace the
same line in the RAM-resident program.

65

RUN

Format: RUN filespec
Example: Bl "0 MYFILE By

This command causes the computer to LOAD and RUN the des-
ignated filespec. It is a combination of the two commands LOAD
and RUN. However, the RUN command can be used only with
tokenized files. Therefore, you cannot execute a RUN “D2:
LIST.LST”’ command.

To chain programs and cause a second segment of a file to load
and run automatically, you can use a RUN “D: filespec’ as the
last line of the first segment. However, the second program must
be able to stand alone without depending on any variables or
data in RAM from the first program. Before running the first seg-
ment, make sure that you have saved it on a diskette, because

the RUN statement will wipe out your RAM-resident first segment

when the second segment is loaded.

Input/Output Control Blocks

An I/O (input/output) operation is controlled by an I/0 Control
Block (IOCB). An IOCB is a specification of the I/O operation,
consisting of the type of I/O, the buffer length, the buffer
address, and two more auxiliary control variables of which the

second is usually 0. ATARI BASIC sets up eight IOCBs and
dedicates three as follows:

IOCB #0 is used by BASIC for I/0 to E:
IOCB #6 is used by BASIC for I/Q to S:

IOCB #7 is used by BASIC for LPRINT, CLOAD, and SAVE
commands.

IOCBs #1 through #5 can be used freely, but the dedicated
IOCBSs should be avoided unless a program does not make use
of one of the dedicated uses above. IOCB #0 can never be
opened or closed from a BASIC program.

66

Each 1/0 command must have an IQCB associated with it. The
I/0 commands that can be used in connection with DOS 2.5 are:

OPEN/CLOSE
INPUT/PRINT
PUT/GET
STATUS

XIO

Using the OPEN/CLOSE Commands

OPEN (0.)

Format: OPEN #iocb, aexp1, aexp2, filespec
Example: 1868 OFER#Z S Bs "IN -
ATARIZEE BAasH

The OPEN statement links a specific IOCB to the appropriate
device handler, initializes any ClO-related control variables (see
Glossary), and passes any device-specific options to the device
handler. The parameters in this statement are defined as follows:

Mandatory character entered by user.
iocb A number between 1 and 7 that refers to a device or file.
aexpi Number that determines the type of operation to be
performed.
Code 4 = input operation; positions file pointer to
start of file.
6 = disk directory input operation, DOS 2.0S
compatibie.
7 = disk directory input, with DOS 2.5 informa-
tion.
8 = output operation; positions file pointer to
start of file.

9 = end-of-file append operation; positions file
pointer to end of file. Code 9 allows pro-
gram input from screen editor without user
pressing (Return).

12 = input and output operation; positions file
pointer to start of file.
aexp2 Device-dependent auxiliary code.
filespec Specific file designation (see Section 3 for filespec
definition).

67

In the example OPEN #2, 8, 0, ‘“D1: ATARI800.BAS"’, IOCB #2 is
opened for output to a file in Drive 1 designated as ATARIS0O0.
BAS. If there is no file by that name in Drive 1, DOS creates one.
If a file by that name already exists, the OPEN statement de-
stroys that file and creates a new one. If the IOCB has already
been opened, the screen displays an ERROR-129 (File Already
Opened).

CLOSE (CL.)
Format: CLOSE #iocb

- -

Example: 858 CLOSE #2

The CLOSE command releases the IOCB that had been previ-
ously opened for read/write operations. The number following
the mandatory # must be the same as the IOCB reference num-
ber used in the OPEN statement (see example below). The same
IOCB cannot be used for more than one device at a time. You will

not get an error message if you close a file that has already been
closed.

18 OFEN #1:8:8:"D:FIL . EAS"
20 CLOSE #1

Note: The END command will close all open files (except IOCB #
0).

Using the INPUT/PRINT Commands
INPUT (1.)

n | [avar|[[avar
Format: INPUT #iocb{;} svar||,|svar]...

Examples: 186 IHFIUT #2HaY
1ag THPUT #2:H$

This command is used to request data (either numerical or

string) from a specified device. INPUT is the complement of

PRINT. When it is used without a #iocb, the data is assumed to

be from the default device (E:). INPUT uses record I/O (see
PRINT).

68

In the sample INPUT/PRINT program listed below, Line 35 allows
the user to type in data on the keyboard (default device). In Line
70, the INPUT statement reads the contents of the string from
the opened file.

FEM #«CEEATE DATE FILE##
FEM ##0FEH HITH 2 CREATES DATA FILE#x®
OFEH #1+2:82 "D HRITE . DaT"

ODIM HETECEE

TOUEMTER ® SEMTEMCE MOT MORE THaH
CHARACTERS ¢

IHFUT HRETE

FEM #=UREITE DATA TO DISEETTE=®
FEIMNT #1:URTH

FEM #xCL0SE DaTa FILEss

CLOSE #1

FEM =«0FEMN DaTa FILE FOR REATs®
FEEM #=«0FEM HITH 4 IS A READ OHLY#s
OFEM #1l«d-8"0:HRITE. DAT"

FEM #«REEAD DATE FROM DISEETTE s
IHPUT #1:UETE

FEM #xFEIMT DEToss

FEIMT HETF

FEM w«CL0OSE DATE FILEss

CLOSE #1

DO 1 T T e T 1 T B |

il
fiex]

Ll

t)

DU U R | SR OO B I N O SO i R 1

T
et

10}

T
A%

CE S I T B B B g Y

DURN TR

flonsd
et

PRINT (PR. or ?)

Format: PRINT l# iocb} [{} [exp]..]
[exp]

FEIMNT #2:4sY

FRINT #2

TOLFE

FRIMT "X = .4

)
SLE Y

Examples:

.,_.
~
e

PRE

RN
SR Y

.P.
=
.
!

AR

This command writes an expression (whether string or
arithmetic) to the opened device with the same IOCB reference
number.

If no IOCB number is specified, the system writes the expression
to the screen, which is the default device. If the information is
directed to a device that is not open, ERROR-133 displays on the
screen.

69

PRINT performs what is called record I/O. Records are sets of
bytes separated by end-of-line characters (9B Hex). The size of a
record is arbitrary. Record size can be determined by the length
of a string printed to a diskette file or the format of an arithmetic
variable. It can also be the length of a string of characters en-
tered from the keyboard and terminated by (Return).

The INPUT statement cannot generally read a record that is
longer than 255 characters in length. If you PRINT a record to the
disk that you might later want to INPUT, it is best to limit the size
of the PRINTed records to 255 characters or less.

Direct Accessing With the
NOTE/POINT Commands

NOTE (NO.)

Format: NOTE #iocb, avar, avar
Example: HOTE #2:@s B

Files are created sequentially and are normally accessed from
beginning to end. If you want to access the records in a file in a
nonsequential manner (directly), you can either read the file
sequentially and stop at the record you want, or use a special
method of addressing the record you want.

Because the former is very time-consuming for large files, DOS
2.5 incorporates NOTE and POINT to give you the capability of
accessing a file randomly. To get to a record without going
through every record that precedes it, you need to let the com-
puter know what record you want. This requires a ‘‘note’’ of the
file’s sector, so you use a NOTE command before each write and
save the returned value in a table.

This command gets the value of the current file pointer for the file
using the specified IOCB. The file pointer specifies the exact
position in the file where the next byte is to be read or written.
This command stores the absolute disk sector number in the first
arithmetic variable and the current byte number in the second.
Sector numbers range from 1 to 719 in single density and 1 to
1023 in enhanced density; byte numbers range from 0 to 124.

70

The following program listing and sample run illustrate one way
of using NOTE to store keyboard input into a specified file loca-
tion.

Following is a sample program that uses NOTE to store informa-
tion entered from the keyboard in a Random-Access disk file.
Type in the program, enter some numbers, and press to

end. The sample run uses numbers, but you can type any string
for A$ up to 40 characters.

1 REM MOTEST - HOTE STETEMEMT DEMO

2 REM THIS PROGRAM READS LIME OF DaTa
Z REM FROM THE KEYEOHRD AHMD STORES

4 REM THEM O DISK IM FILE D:DaTFIL.DAT.
5 REM POIMTERS ARE STORED IH D:POIMTS DAT.
2@ DIM AC400

25 OFEM #1298 "I:DATFIL. DAT"

27 OFEM #2290y "I:FOIMTS . DAT"

8 REM READ LIME OF DATHE FROM K-

48 IMFUT &%

41 FPRINT @

42 REM IF RETURM OHLYs THEH STOP

45 IF LEM¢a$ =0 THEM 1896

S8 MOTE #1say

S5 REM STORE LIME OF DAaTa.

6B PRIMT #1.a%

£1 REM STORE FOIMTER TO BEGIMMIMG OF
£2 REM LIME OF DETH.

65 PRIMT B2y

TE OPRINT "SECTOR # = "My "EYTE # = "y
S8 GOTO 48

95 REM IMDICATE EMD OF FILE

1EE PRIMNT #2:0,": "0

118 EMI

This sample program was run on a diskette that contained the

DOS.SYS, DUP.SYS, and MEM.SAV files. Your sector and byte
numbers may be different. Sample entries were 45, 55, 75, 80,
90, 100, and 110.

71

45

SECTOR # =145
55

SECTOR # = 145
75

SECTOR # = 145
80

SECTOR # = 145
90

SECTOR # = 145
100

SECTOR # = 145
110

SECTOR # = 145

POINT (P)

Format: POINT #iocb, avar, avar
Example: 168 FOIMT #2484 F

POINT is the complement of NOTE. This command sets the file
pointer to an arbitrary value determined by the arithmetic varia-
bles. POINT is used when reading specified file locations (sector
and byte) into RAM. The first arithmetic variable specifies (points
to) the sector number, and the second arithmetic variable speci-
fies the byte number into which the next byte will be read or writ-
ten. As with the NOTE command, the sector number ranges from
1to 719 in single density and 1 to 1023 in enhanced density; byte
range is between 0 and 124. If you point out of an opened file,
you will get a File Number Mismatch error message. The pro-
gram listing below contains an example of the POINT command
to read data created by the program shown as the example for

the NOTE command.

When run, this program prints the keyboard input by sector and
byte in reverse order from the way it was written to the diskette.

After you type the sample NOTE and POINT programs, run the
NOTE program, then run the POINT program without changing

disks.

72

BYTE# =9
BYTE # = 12
BYTE# = 15
BYTE # = 18
BYTE # = 21
BYTE # = 24
BYTE # = 28

[y

REM POIMTEST - POIMT STATEMEWT DEMO

2 REM THIS FREOGEARM TAKES THE FILE
& REEM CREATED EBY HMOTEST aAHD PRIMTS

REM THE LLIMES IH REWVERSE ORDER.
TDIM BoZ@etin

DIM AFEcd4E

FEM OFEH DATA FILE

OFEM #1ad8:"D:-0aTFIL . DATY

FEEM OFEM POIHTER FILE

DFEH #2408 "0 POIHTS . DaTe

FEM EEAD POINTERS IMTO aH arREaY
FoRE I=a TO 246

IHFi!T #hﬁ?€5?
; CIa =Y

Y= THEM LAasT=I:I==26

Fcx]}
il

DEX U o% B % B O

Ao
R I B s B A

iy
ol

DTN RN B L Y
"y T
eede® O

FE T I

FEM PRIMT FILE IM REUERSE ORLER
FOR I=La=T-1 TO 8 STER -1
A=BOTs B3 Y=RCla 10

]
e o T LT
(]

g
T T e 01T T
ot R By

fl fede jenl

FOTHT #1sxsY
FRIMT "SECTOR # = "i=:"EYTE # =

THFUT #1:R#¥
FREINT a%
ME=T I

Bk fonde Bed I ek
En R) R

Here is the sample run:

SECTOR # =145 BYTE # = 28
110

SECTOR # = 145 BYTE # = 24
100

SECTOR # = 145 BYTE # = 21
90

SECTOR # = 145 BYTE # = 18
80

SECTOR # = 145 BYTE# = 15
75

SECTOR # = 145 BYTE # = 12
55

SECTOR # = 145 BYTE# =9

45

The PUT/GET Commands

PUT (PU.)
Format: PUT #iocb, aexp

Example: 1 &8 FUT #6s @gS0o g

The PUT command writes a single byte (value from 0 to 255)to
the device specified by the IOCB reference number. In the sam-
ple program below, the PUT command is used to write each
number you type into an array dimensioned as A(50). You can
enter up to 50 numbers, each of which must be less than 256 but
greater than or equal to zero. This command is used to create
data files or to append data to an existing file.

GET (GE.)
Format: GET #iocb, avar
Example: 1 & GET #&

This command reads a single byte from the device specified by
the IOCB reference number into the specified variable. GET
allows you to retrieve each byte stored by the PUT command.

The sample program shown below demonstrates PUT and GET.
In the GET part of the program (lines 130 to 230), rather than
using a TRAP statement to sense an end-of-file error, a zero byte
(entered by you) has been used to determine the end of data.

L1 DTy
THEAH

THFUT =

74

9% REM WRITE HUMBER TO FILE
1B FUT #1i

W EREMELL L TAT®

iF

l%"” 'i"l MG

Note that INPUT/PRINT and PUT/GET are incompatible types of
Input/Output commands. PRINT inserts end-of-line (EOL) char-
acters between records and INPUT uses them to determine a
record. GET and PUT merely write single bytes to a file without
separating them with EOL. A file created using PUT statements
will look like one large record unless you place an EOL (9B hex)
character into the file. After you enter the sample PUT/GET pro-
gram, type RUN and press (Return]. Use the number entries 2, 5,
67, 54, and 68. When you run the program, it prints the numbers
entered from the keyboard together with the byte location where
each is stored. For example:

BYTE#1 =2
BYTE#2 =5
BYTE #3 = 67
BYTE #5 = 68

75

Using the STATUS Command

STATUS (ST.)

Format: STATUS #iocb, avar
Example: 16868 STaTUS #5: ERROR

The STATUS command is used to determine the condition (state)
of afile. This command is a CIO command and checks for sev-
eral ways an error might occur. The first set of possible errors it
checks for is as follows:

Sector buffer available? If no, then ERROR-161
Legal device number? If no, then ERROR-20
Legal filename? If no, then ERROR-170
File on diskette? If no, then ERROR-170
File locked? If yes, then ERROR-167

You can also identify all I/O serial bus errors with a STATUS com
mand. These are as follows:

Device timeout ERROR-138
Device not acknowledged ERROR-139
Serial bus error ERROR-140
Serial bus data frame overrun ERROR-141
Serial bus checksum error ERROR-142
Device done ERROR-144

Before you can issue a STATUS command, you must open the
file. Itis advisable that you use the XIO command form for this
command since it is more reliable and allows you to associate a
specific filename with the error you are trying to find.

Substituting the XIO Command

for DOS Menu Options
XI0 (X.)
Format: XIO cmdno, #iocb, aexp1, aexp2, filespec
Example: 168 W10 Za g8 "1 TEST . Basy
76

The XIO command is a general INPUT/OUTPUT statement used
for special operations. It is used when you want to perform some
of the functions that would otherwise be performed using the
DOS Menu selections. These XIO commands are used to open a
file, read or write a record or character, close a file, reference a
location in a file for reading or writing, or to rename, delete, lock,

or unlock a file. Note that XIO calls require filespecs.

CMDNO (command number) is used to designate just which of
the operations is to be performed.

CMDNO OPERATION EXAMPLE

13 STATUS Request Xl0 13, #1,0, 0, ‘D: TEST.BAS”

32 RENAME X10 32, #1,0, 0, “D: OLD,
NEW”

33 DELETE X10 38, #1,0,0, "“D: TEMP
BAS”

35 LOCK FILE XI10 35, #1, 0, 0, ‘D: ATARI.
BAS”

36 UNLOCK FILE XIO 36, #1, 0, 0, “‘D:DOSEX.
BAS”

253 FORMAT DISK Xl0 253, #1, 0,0, “‘D1:”
Format Single Density

254 FORMAT DISK XlO 254, #1,0, 0, “D1:”

Format Enhanced Density

Note: Do not use the device name twice when renaming a file,
i.e., donotuse “‘D: OLD, D: NEW.”

Following is a mini-DOS program that lets you manipulate your
disk files from BASIC. Normally if you want to rename, delete,
lock (protect) or uniock (unprotect) a file, you need to exit BASIC
by typing DOS to access the DOS menu, which usually erases
any BASIC program in memory. By using the XIO command you
can perform these functions without exiting to DOS.

77

~
-

18 REM MIMI-DOS PROGRAM 1” HIIF'w nos
S8 REM FUNCTIONS FROM BaSIC

28 DIM FILE#S 4L1'wHkH1E? L

48 REM GET DISK DIRECTORY

a8 GRAFHICE &

BE TRAF 188 0PEH #1sG8: "0w %"

VEOFOR I=1 TO &4
SEOIHPUT #1FILES
HEOY FILE$: HEST I
188 CLOSE #1

Tle v "Dl OuU WAaMT TO: <13 REMAME &
FILE™"

128 v 7 "OEy DELETE B FILE":% =% iz
LOCE /& FILE"

LEE % F "ody UMLODKE @ FILE":% 7 S
grTe

148 7 7 "EMTER & HUMEER ¢1-%5 A THRPUT
B

138 IF H<l OF H>5 THEM 148

led@ OH M GOSUE 200 SE58. 400, SEEL TR
GOTO 5@

178 ERD

193 REM —HfruuTIHE TO REHAWME & FILE
199 REM USE HID 32
SEa v ”EHTEH FILEMAME TO CH&MCGE I
THIS FORM: I FILEMAME ExT®
218 IMPUT FILES
2@ T "EMTER HEM HaME Fop v FILEf:" IH
THIS FORM: FILEM&ME EXT®
SEG OIMPUT HaMEZ$
FILEFOLEMCFILES +1a=vyn
FILESCLEMCFILES +1 v =HaMES
SI0 EEZs#1. 8.0 FILES
FETLRH
FEM SUBROUTIME TO DELETE & FILE
FEM USE =I0 =3

© W O UEMTER FILEM&SME TO DELETE IH
FORM: D:FILEMAME EwTo

IHFUT FILE#
T "RRE .HH SURE SYOU LAMT To DE-
E YiFILEF: " ovaps";

THFUT HHMEE$

1%}
=
t

8§
SN

T
I e
o Ty -
KRR

L BN o B 0 BN

ni i

ied Pol ol Pl

T
KA RN

DI B A B S W B |
- T

rd T oird ed

ol
L

SHEZ$C 1 10<>"y" THEH Z&E
ZZ, 158080 FILES

iﬂ1 !!¥ FILE |
”LH:EE FILEMAME TO
FORM: I:FILEHAME Ed
418 THPUT FILE#
428 w10 S5 #1880 FILES
458 RETUREHM
428 REM UHLOCK FILE WITH =IO 3
AE T OUEMTER FILEMAME TO URHLOCE TH
= FORM: D:FILEHAME . ERT
THFUT FILES
A0 Foa#le B0 FILES

SER REETUREH

IM THIZ

Accessing Damaged Files

Files can be damaged in two ways. The disk directory entry
(filename, directory pointer, and the number of sectors in the file)
can be damaged; or the file itself can be damaged. (For more
information on accessing and repairing damaged files, see the
DISKFIX.COM section of Appendix L.)

Shouid the disk directory entry be damaged, there is no way to
access the file. If the disk directory entry was accidentally de-
leted, an ERROR 170 (File Not Found) will appear on the screen.
If the number of sectors indicated in the disk directory entry are
shorter than the actual number of sectors in the file, an ERROR
164 (File Number Mismatch) will appear on the screen. In the
latter case, you may be able to retrieve that portion of the file that
falls within the sector range by initiating the Get Byte program
shown below, where File 1 = the damaged file and File 2 = the
recovery file.

5| il— F’ 1#
25 TRAF Eﬁ
”‘tﬁ ..1r T :H: ! ¥ F
48 PUT #2228
S5 GOTO
s

SH CLﬂ E

79

Note: You can read only the sectors that fall BEFORE the dam-
aged sector(s). All other sectors after the damage cannot be
accessed. As a result, it would be best to COPY the good files on
the damaged diskette to a new diskette to avoid any further prob-
lems.

If the file itself is damaged, you can also use the Get Byte pro-
gram to transfer each good sector from the damaged file into a
recovery file.

The AUTORUN.SYS File

When an AUTORUN.SYS file exists on the diskette in Drive 1,
that file will automatically be loaded into RAM and executed (if
appropriate) every time you boot the system. This entire process
is completed before control of the system is returned to you. The
AUTORUN.SYS file can be data; it can also be object code that is
loaded but not executed; or it can be object code that is loaded
and then executed as soon as the load is complete.

The following sample program shows the use of AUTORUN.SYS
to boot up directly to DOS even if built-in BASIC or a cartridge is
present. After execution, AUTORUN.SYS normally returns to the
DOS initialization routine. If it does not return during your appli-
cation, or if you use before the return, the system initializa-
tion must be completed before proceeding. You can do this by
modifying two operating system storage locations: COLDST at
address 244 (hex) and BOOT at address 9 (hex). COLDST
should be cleared to 00 and BOOT set to 01.

The sample program sets these two locations to the proper value
and then jumps indirectly to the start DOS vector.

If you do not have an Assembler Editor cartridge, you can create

the equivalent file using BASIC POKE statements and then sav-
ing the binary file in DOS. Enter and RUN the following:

80

After running the program, go to DOS and save the file using
Option K, Binary Save.

Example:

Note: There is no number entered for the INIT parameter. If you
turn off your computer and then turn it back on, you should boot
up directly into DOS. To enter BASIC, use the RUN CARTRIDGE
function or press (Reset).

Here is an assembly version of the program:

Hex Code Assembly Language
; Autorun Program

; Run DOS without going to cartridge

bOLDST = $244

BOOT = $09
DOSVEC = $0A
* = 3A08
A2 00 DOSGO LDX #0
8E 44 02 STX COLDST
E8 INX
86 09 STX BOOT
6C 0A00 JMP (DOSVEC)
* = $2E0
; run address at 2E0
98 3A .WORD DOSGO
.END

81

APPENDIX A
ALPHABETICAL
DIRECTORY OF BASIC
RESERVED WORDS
USED WITH DISK
OPERATIONS

Oo0o0oboo0o0o0o0oo0oDooogoo

This is a list of BASIC reserved words and their abbreviations,
with a brief summary of the BASIC statement made by each one.

Note: The period is mandatory after all abbreviated keywords.

CLOSE CL. /O statement used to close a disk file at
the conclusion of I/O operations.

DOS DO. This command causes the DOS Menu to
appear. The Menu contains all DOS
utility selections. Passes control from
cartridge to DOS utilities.

END Stops program execution, closes files,
and turns off sounds. Program may be
restarted using CONT. (Note: END may
be used more than once in a program.)

ENTER E. 1/O command used to retrieve a listed
program in untokenized (textual) form. If
a program or lines are entered when a
program is resident in RAM, ENTER will
merge the two programs. If you don’t
want programs merged, type NEW be-
fore using ENTER to load a program into
RAM.

83

GET GE.
INPUT .
LIST L.
LOAD LO.
NOTE NO.
OPEN o.
POINT P
PRINT PR. or ?
PUT PU.
84

Used with disk operation to enter a sin-
gle byte of data into a specified variable
from a specified device.

This command requests data from a
specified device. The default device is
E:(Screen Editor).

This command outputs the untokenized
version of a program to a specified de-
vice.

I/0 command used to retrieve a saved
program in tokenized form from a speci-
fied device.

This command stores the absolute disk
sector number and the current byte
number of the file pointer in its two
arithmetic variables.

Opens the specified file for input or out-
put operations. Determines the type of
operations allowed on a file.

This command is used in setting the file
pointer to a specified location (sector
and byte) on the diskette.

I/0 command that causes output from
the computer to a specified output de-
vice in record format.

Causes output of a single byte of data—
i.e., a character—from the computer to a
specified device.

RUN

SAVE

STATUS

TRAP

XIO

S.

ST.

T.

Both loads and starts execution of des-
ignated filespec.

I/O statement used to record a to-
kenized version of a program in a speci-
fied file on a specified device.

Calls status routine for specified device.

Directs execution to a specified line
number in case of a program error, al-
lowing you to maintain control of the
program and recover from errors.

General I/O statement used in a pro-
gram to perform DOS Menu selections
and specified I/O commands.

85

APPENDIX B

NOTATIONS AND
TERMINOLOGY USED

WITH DOS 2.5

UoOo0o0ooo00oooooooonooo

SYSTEM RESET

RETURN

[]

{3

CAPITAL

LETTERS

cmdno

exp

Press the key on the keyboard.

Press the key on the keyboard.
Brackets enclose optional items.

Ellipsis. An ellipsis following an item in
brackets indicates that you can repeat the
optional item any number of times, but are
not required to do so.

Braces. Items stacked vertically in braces
indicate that you have a choice as to which
item you want to insert. Select only one to
putin your statement or command.

Capital letters are used (usually in BOLD-
FACE) to indicate commands, statements,
and other functions you must type exactly
as they appear.

Punctuation marks. These punctuation
marks must be typed as shown in the for-
mat of a command or statement. However,
do not type brackets or braces.

Command number. Used in XIO com-
mands.

Expression. In this manual, expressions

are divided into three types: arithmetic,
logical, and string expressions.

87

aexp

aexp1

aexp2

filespec

10CB

lineno

var

88

Arithmetic expression. Generally com-
posed of a variable, function, constant, or
two arithmetic expressions separated by
an arithmetic operator(aop).

Arithmetic expression 1. This arithmetic
expression represents the first auxiliary /O
control byte when used in commands such
as OPEN.

Arithmetic expression 2. This arithmetic
expression represents the second auxiliary
I/O control byte when used in commands
such as OPEN. Usually it is set to 0.

File specification. Usually a string
expression that refers to a file and the
device where it is located, e.g.,
“D1:MYPROG.BAS’’ for a file on Drive 1.

Input/Output Control Block (IOCB). An
arithmetic expression that evaluates to a
number from 1 to 7. The IOCB is used to
refer to a device or file. IOCB 0 is reserved
in BASIC for the Screen Editor and should
only be used if the Screen Editor is not to
be used.

Line number. A constant that identifies a
particular program line in a deferred-mode
BASIC program. A line number can be any
integer from 0 through 32767. Line num-
bering determines the order of program
execution.

Variable. Any variable. In this manual, vari-
ables are classified as arithmetic variables
(avar), matrix variables (mvar), or string
variables (svar).

avar

svar

Arithmetic variable. A location where a
numeric value is stored. Variable names
can be from 1 to 120 alphanumeric charac-
ters, but must start with an unreversed,
uppercase alphabetic character.

String variable. A location where a string of
characters may be stored.

89

APPENDIX C
ERROR MESSAGES
AND HOW TO RECOVER

LbobLaaJ00boou0agggoooad

Note: Error messages 2 through 21 should only occur when

running a BASIC program.
Error Error
No. Name
2 Insufficient
Memory
3 Value Error
4 Too Many
Variables
5 String Length

Error

Out of Data
Error

Line Number
Greater Than
32767

Cause and
Recovery

Your computer system does not
have enough memory to store the
statement, or to dimension a new
string variable. Delete any unused
variable names or add more mem-
ory. (See your BASIC Reference
Manual for tips on memory conser-
vation.)

Either the expected positive inte-
ger was negative or the value was
not within the expected range.

You have exceeded the maximum
number (128) of variable names
and must delete any that are no
longer applicable. (See your
BASIC Reference Manual.)

You have attempted to read from
or write into a location past the
dimensioned string size, or you
have used zero as a reference
index. Enlarge DIM size. Do not
use zero as an index.

You do not have enough data in
your DATA statements for the
READ statements.

Check line number references in
statements such as GOTO and
RESTORE.

91

Error
No.

11

12

13

14

15

16

17

18

19

92

Error
Name

Input
Statement
Error

Array or
String DIM
Error

Floating Point
Overflow/
Underflow

Line Not
Found

No Matching
FOR

Line Too
Long Error

GOSUB or FOR
Line Deleted

RETURN Error
Syntax Error

VAL Function
Error

LOAD Program
Too Long

Cause and
Recovery

You have attempted to enter a non-
numeric value into a numeric varia-
ble. Check your variable types
and/or input data.

The DIM size exceeds 5460 for
numeric arrays or 32767 for
strings; an array or string was redi-
mensioned; reference was made
to an undimensioned array or
string.

You have attempted to divide by
zero or to refer to a number with an
absolute value less than 1E-99 or
greater than or equal to 1E + 98.

A GOSUB, GOTO, or THEN state-
ment referenced a non-existent
line number.

A NEXT statement was encoun-
tered without a matching FOR.

You have exceeded the BASIC
line-processing buffer length.

A NEXT or RETURN statement
was encountered and the corres-
ponding FOR or GOSUB was de-
leted since the last time the pro-
gram was run.

Check your program for a missing
GOSUB statement.

The computer encountered a line
with improper syntax. Fix the line.

The string in a VAL statement is not
a number string.

Your computer system does not
have enough memory to load your
program.

Error
No.

20

21

Error
Name

Device Number
Error

LOAD File Error

Cause and
Recovery

You entered a device number that
was not between 1 and 7.

You attempted to load a nonload
file, not a BASIC tokenized file.
Tokenized files are created with the
SAVE command.

Note: The following are input/output errors that result during the
use of disk drives, printers, or other accessory devices. Further
information is often provided in the auxiliary hardware manual.

128

129

130

131

BREAK Abort

IOCB* Already
Open

Nonexistent
Device

I0CB Write-
Only

You have pressed the (Break] key
during I/0 operation, stopping
execution.

An OPEN statement within a pro-
gram loop or IOCB is already in
use for another file or device.

You have tried to access a device
not in the handler table, i.e., the
device is undefined. This error can
occur when trying to access an
ATARI direct-connect modem with-
out running the ““T:" device
AUTORUN.SYS file. Another com-
mon cause of this error is specify-
ing a filename without a device,
i.e., “MYFILE” instead of *‘D:MY-
FILE.” Check your I/O command
for the correct device. Then load
and initialize the correct handler.

You have attempted to read from a
file opened for write-only. Open the
file for read or update (read/write).

*10CB refers to Input/Output Control Block.

93

Error
No.

132

133

134

135

136

137

94

Error
Name

lllegal
Handler
Command

Device/File
Not Open

Bad IOCB
Number

IOCB Read-
Only

End of File

Truncated
Record

Cause and
Recovery

This is a ClO error code. The com-
mand code passed to the device
handler is illegal. The command is
either less than orequalto 2 oris a
special command to a handler that
hasn’t implemented any special
commands. Check your XIO or
IOCB command code for an illegal
command code.

You have not opened this file or
device. Check your OPEN state-
ment or file /O statement for a
wrong file specification.

You have tried to use an illegal
IOCB index. For BASIC the range
is 1-7, as BASIC does not allow
use of IOCB 0. The Assembler
Editor cartridge requires the I0CB
index to be a multiple of 16 and
less than 128.

You have tried to write to a device
or file that is open for read-only.
Open the file for write or update
(read/write).

You have read all the data from the
file.

This error typically occurs when
the record you are reading is larger
than the maximum record size
specified in the call to CIO.
(BASIC’s maximum record size is
255 bytes.) Trying to use an INPUT
(record-oriented) type of command
on afile that was created with PUT
(byte-oriented) commands can
result in this problem.

Error
No.

138

139

Error
Name

Device Timeout

Device NAK

Cause and
Recovery

When you sent a command over
the serial bus, the device did not
respond within the period set by
the Operating System for that de-
vice command. Either the device
number is wrong or you specified
the wrong device; the device is not
there (wrong spec); it is unable to
respond within the proper period;
oritis not connected. If the device
is a cassette, the tape baud rate
may have been mismeasured or
the tape improperly positioned.
Examine all connections to make
sure they are secure and check the
disk drive to make sure it is turned
on and set for the correct drive
number. Check your command for
the correct drive number. Retry the
command. If this error recurs, have
the disk drive checked.

The device cannot respond be-
cause of bad parameters such as
an unaddressable sector. The de-
vice might also have received a
garbled or illegal command or
received improper data from the
computer. Check your 1/0O com-
mand for illegal parameters and
retry the command. Also check
your /O cables. This is a device-
specific error, so refer to the docu-
mentation for that device.

95

Error Error Cause and
No. Name Recovery

140 Serial Frame Bit 7 of SKSTAT in the POKEY chip
Error is set. This means that communi-

cation from the device to the com-
puter is garbled. This is a very rare
error and it is fatal. If it occurs more
than once, have your device or
computer checked. You can also
remove the peripherals one at a
time to isolate the problem. For
cassettes, try the recovery sug-
gested in Error 138.

141 Cursor Out Your cursor is out of range for the
of Range particular graphics mode you
chose. Change the cursor position
parameters.
142 Serial Bus Bit 5 of SKSTAT in POKEY is set.
Overrun The computer did not respond fast

enough to a serial bus input inter-
rupt, or POKEY received a second
8-bit word on the serial bus before
the computer could process the
previous word. This is rare error. If
it occurs more than once, have
your computer serviced.

143 Checksum Error The communications on the serial
bus are garbled. The checksum
sent by the device is not the same
as that calculated for the frame
received by the computer. There is
no standard recovery procedure
because it could be either a hard-
ware or software problem.

96

Error Error Cause and

No. Name Recovery
144 Device Done The device is unable to execute a
Error valid command. You have either

tried to write to a write-protected
diskette or device, or the disk drive
is unable to read/write to the re-
quested sector. Remove the
write-protect tab. This error is also
caused by trying to read an en-
hanced density diskette in an 810
drive or by variations in drive motor
speed. If you suspect motor speed,
have your drive checked. See spe-
cific manuals for other devices.

145 lllegal Screen You have tried to open the Screen
Mode Editor with an illegal graphics
mode number. Check your graph-
ics mode call or the aux2 byte in

the IOCB.
146 Function Not The handler does not contain the
Implemented function—e.g., trying to PUT to the

keyboard or issuing special com-
mands to the keyboard. Check
your I/O command for the right
command and the correct device.

147 Insufficient Not enough RAM for the graphics
RAM mode you selected. Add more
memory or use a graphics mode
that doesn’t require as much

memory.
160 Drive Number You specified a drive number that
Error was not 1-8, you did not allocate a

buffer for the drive, or your drive
was not powered up at boot time.
Refer to Sections 1 and 2 of this
manual. Check your filespec or
byte 1802 for the number of drive
buffers allocated.

97

Error
No.

161

162

163

164

165

166

167

98

Error
Name

Too Many
OPEN Files

Disk Full

Unrecoverable
System 1/O Error

File Number
Mismatch

File Name Error

POINT Data
Length Error

File Locked

Cause and
Recovery

You don’t have any free sector
buffers to use on another file.
Check Location 1801 for the num-
ber of allocated sector buffers.
Also make sure that no files are
open that should not be open.

You don’t have any more free sec-
tors on this diskette. Use a differ-
ent diskette that has free sectors.

This error means that the File Man-
ager has a bugin it. Your DOS or
the diskette may be bad. Try using
another DOS.

The structure of the file is dam-
aged, or POINT values are wrong.
One of the file links points to a
sector allocated to another file.
Turn the system off and retry pro-
gram execution. If this fails, you
have lost the file. Try to recover the
other files on the diskette, then
reformat the diskette.

Your file specification has illegal
characters in it. Check the filespec
and remove the illegal characters.

The byte count in the POINT call
was greater than 125 (single-
density). Check the parameters in
your POINT statement.

You have tried to access a locked
file for purposes other than reading
it. Use DOS Menu option G to un-
lock the file and retry your com-
mand.

Error Error Cause and

No. Name Recovery
168 Device Command You issued an illegal command to
Invalid the device software interface.

Check the documentation for that
device and retry the command.

169 Directory Full You have used all the space allo-
cated for the Directory (64 files).
170 File Not Found You have tried to access a file

that doesn’t exist in the diskette’s
Directory. Use DOS Menu option A
to check the correct spelling of the
filename and to be sure it is on the
diskette you are using.

171 POINT Invalid You have tried to POINT to a byte
in a file not opened for UPDATE.
Check the parameters of your
OPEN statement or aux1 byte of
the IOCB used to open the file.

172 lllegal Append You have tried to open a DOS 1 file
for append using DOS 2.5. DOS
2.5 cannot append to DOS 1 files.
COPY the DOS 1 filetoa DOS 2.5
diskette using DOS 2.5.

173 Bad Sectors at The disk drive has found bad sec-
Format Time tors while formatting a diskette.
Use another diskette, as you can-
not format a diskette with bad sec-
tors. If this error occurs with sev-
eral diskettes, your disk drive may
need repair.

99

APPENDIX D
DOS 2.5 MEMORY MAP
FOR 64K RAM SYSTEM

0o0d0ooooouocogougooooon

ADDRESS CONTENTS
. Decimal Hexadecimal
_ 65535 FFFF
OPERATING SYSTEM
_ 49152 C000
49151 BFFF BFFF
or or NONE 16K, 8K, or NO CARTRIDGE

32768 8000 A000
32767 7FFF or 9FFF or BFFF

SCREEN DISPLAY AREA
- varies
varies HIMEM*
- USER PROGRAM AREA
varies
3305 DISK UTILITY PROGRAMS (DUP.SYS)
1D7C LOMEM**
Sector Buffer 4 BUFFER
Sector Buffer 3 AREA
Sector Buffer 2 RESERVED
Sector Buffer 1 FORDOS 2.5
Drive 8 (RAMDISK) Buffer
Drive 2 Buffer
6781 19CC Drive 1 Buffer
6780 19CB
FILE MANAGEMENT
SUBSYSTEM (DOS.SYS)
1792 0700
- 06FF
VARIES — most often used by languages
- (ATARI BASIC does not use $680 - $6FF).
480
- 47F
OPERATING SYSTEM
. (including cassette buffer)
o* * %

* Depends on which graphics mode is currently in use.
** Varies with the number of drive and sector buffers reserved.
*** Portions of PAGE 0 ($00 ~ $FF) may be available with some languages. The Oper-
ating System alone uses only $00 - $7F.
Note 1: For given Drive Buffer allocation and Sector Buffer allocation, LOMEM can be
determined by PEEKing locations 2E7 (LOW) and 2E8 (HIGH) Hex or 743 (LOW) and

- 744 (HIGH) Decimal.

Note 2: To determine the amount of User Program Area available or HIMEM, you can
either make use of the BASIC FRE(0) instruction or PEEKing Locations 2E5 (LOW) and
2E6 (HIGH) Hex or 741 (LOW) and 742 (HIGH) Decimal.

101

APPENDIX E
HEXADECIMAL
TO DECIMAL
CONVERSION TABLE

CO00CCO0O00oouoouooonoo

) FOUR HEX DIGITS
4 3 2 1
HEX DEC HEX DEC HEX DEC HEX DEC
] 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 Cc 3072 C 192 C 12
D 53248 D 3328 D 206 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

Use this table to convert up to four hex digits.

For example, to convert the hex number 1234 to decimal, add the entries from
each of the four columns in the table. For 1 use the column number 4, and so on.

1234 hex. 4096

+ 512
+ 48
+ 4

- 4660 dec.
Other examples:

- EEDD hex.

57344
+ 3584
+ 208
+ 13

61149 dec.
- AB hex.

160
+ 1

171 dec.

103

APPENDIX F
HOW TO SPEED UP
DATA TRANSFERS

TO DISK DRIVE

coootbobooooooooooo

DOS 2.5 has the ability to Write with Read Verify, a safety tech-
nique that should be used whenever improved reliability is more
important than rapid data transmissions. This is the way your
DOS 2.5 Master Diskette is shipped to you. To save time, how-
ever, the information can be written to the diskette without a
Read Verify. Memory Location 1913 (decimal) contains the data
that determines whether the File Management Subsystem will
use Write with Read Verify (57 hex, 87 decimal) or Write without
Read Verify (50 hex, 80 decimal). Write without Read Verify is of
course faster, but may not be as reliable. To customize your ver-
sion of DOS 2.5 from BASIC, you need to

FOREE 191520

for fast Write (Write without Read Verify). If you would rather have
the Write with Read Verify,

FORE 191287

To alter the version of DOS stored on diskette so that your cus-
tom version will always boot in, simply type DOS and then use an
H command (WRITE DOS FILES) from the DOS Menu to store
the new version of DOS from RAM onto your diskette.

(See also Appendix L, the SETUP.COM section, for how you can
do this with the ““Change System Configuration’’ option.)

Caution: POKEing location 1913 with any values other than 80 or
87 will cause loss of data, a destroyed diskette, and probably a
system lock-up as well.

105

APPENDIX G
HOW TO TELL DOS
HOW MANY
DISK DRIVES YOU HAVE

UoooOobooooDoDoouoooog

This appendix explains how to change the RAM location number
to reflect the number of drives attached to your ATARI Computer
system. (See also Appendix L, the SETUP.COM section.) If you
are using more than two drives (the default maximum), you will
need to poke the correct drive number code into RAM location
1802 (decimal). The following table gives the correct entries for
the number of ATARI 810 or 1050 Disk Drives. Note that a maxi-
mum of four disk drives can be used with DOS 2.5 since the
switches on each drive can only be set from 1 to 4. Note also that
in the Binary Drive Code, there is a 1 corresponding to each drive
in the system.

CODES FOR NUMBER OF
DISK DRIVES ATTATCHED
Decimal Binary

Drives Allocated Drive Code Drive Code
Drive 1 01 00000001
Drive 2 02 00000010
Drive 3 04 00000100
Drive 4 08 00001000
Drives1 + 2 03 00000011 (default)
Drives1 + 2 + 3 07 00000111
Drives1 +2 + 3 + 4 15 00001111

So to tell DOS that you have three disk drives, for example, you
would use POKE 1802, 7.

To alter the version of DOS stored on diskette so that your cus-
tom version will always boot in, simply type DOS and press
(Return]; then use the H. option (WRITE DOS FILES) from the
DOS Menu to store your new version of DOS on your diskette.

107

Note to ATARI 130XE Computer owners: Keep in mind that if
DOS 2.5 is using the additional 64K of memory in a 130XE as a
RamDisk, the RamDisk is always Drive 8 (D8:). See Appendix K
and your 130XE Owner’s Manual for more details.

Technical Notes

In theory, either DOS 2.0S or DOS 2.5 can support up to eight
disk drives and up to eight files open at the same time. In prac-
tice, there are several limitations on these numbers: (1) at a mini-
mum, most programs must reserve IOCB number zero for the
keyboard and screen (the E: device); (2) ATARI does not make a
disk drive that can be assigned a device number greater than 4;
(3) because DUP.SYS loads into memory at a particular location
under DOS 2.0S, and because DOS 2.5 keeps DUP.SYS at that
same location for compatibility reasons, there is a real limit to the
amount of buffer room available when DUP.SYS is active.

The practical result of these limitations is that you are limited to
five disk drives (including the RamDisk if you have an ATARI
130XE Computer) and seven files open at one time when using
BASIC and other languages and programs that pay attention to
the system LOMEM pointer (at location $02E7). If, however, you
wish to be able to use the DOS Menu, you are limited to a maxi-
mum of four drives (again including the RamDisk). Because the
DOS Menu never uses more than two files at a time, you must
provide for at least that many concurrently open files, but you
may use more if you wish.

Another practical limitation on how many drives and buffers you
may use is that many programs currently available assume both
a particular value for LOMEM (the contents of location $0E27)
and a minimal configuration of two drives and three concurrently
open files. Since LOMEM's value depends on the number of
buffers you have chosen, the following comparison chart lists
buffer allocation information for both DOS 2.0S and DOS 2.5.

108

Start of Buffers
Bytes per Drive Buffer
Bytes per File Buffer
LOMEM Value,

2 Drives, 3 Files
LOMEM Value,

3 Drives, 3 Files
LOMEM Value

4 Drives, 2 Files
Bottom of DUP.SYS

DOS 2.0S
$1A7C
$80 (128)
$80 (128)
$1CFC
$1D7C
$1D7C

$1D7C

DOS 2.5
$19CC
$90 (144)
$90 (144)
$1C6C
$1CFC
$1DoC

$1D7C

As you can see from this chart, the controlling location is $1CFC,
which DOS 2.0S uses for LOMEM when DOS is configured for
two drives and three files. DOS 2.5 ensures that identical value
for three drives and three files because it is expected that a nor-
mal ATARI system configuration might consist of two disk drives
connected to an Atari 130XE Computer, which allows the use of a
RambDisk. Since even a RamDisk requires a drive buffer, it has to
be accounted for in configuring for the ‘‘magic’’ value of LOMEM.

109

APPENDIX H
USING DOS 2.5 WITH AN
ATARI 810 DISK DRIVE
OR WITH DOS 2.08
FILES

boooobooooogooogooooo

If your computer system includes an ATARI 810 Disk Drive or if
you have diskette files created and stored under the earlier
ATARI Disk Operating System DOS 2.0S, there are several points
to keep in mind as you use DOS 2.5 with your computer system.

If You Have an ATARI 810 Disk Drive

¢ An 810 Disk Drive cannot read a diskette formatted in en-
hanced density using DOS 2.5 and an ATARI 1050 Disk Drive.
Be sure to mark each diskette you format so that you will know
whether it is formatted in single or enhanced density.

¢ Because your DOS 2.5 Master Diskette is itself formatted in
enhanced density, you cannot use it (or any enhanced-density
duplicates of it) to load DOS 2.5 from an 810. If you want a
version of DOS 2.5 that you can load from an 810, first use
DOS to format a diskette in single density. Then use DOS
Menu option H., WRITE DOS FILES, to write DOS.SYS and
DOS.DUP from your DOS 2.5 Master Diskette onto the disk-
ette. If you like, you can also use option C., COPY FILE, to
copy RAMDISK.COM, SETUP.COM, COPY32.COM, and
DISKFIX.COM onto your single-density version of DOS (see
Appendices Kand L).

* You cannot duplicate an enhanced-density diskette from a
1050 Disk Drive to an 810. You can duplicate a single-density
diskette from any ATARI Disk Drive to any other. So if your
system includes both a 1050 and an 810, you may find it con-
venient to format most of your diskettes in single density so
that they will be interchangeable between your drives.

11

* You can usually use DOS Menu option C., COPY FILE, to copy
files from an enhanced-density diskette in a 1050 to a single-
density diskette in an 810, with these limitations:

— You cannot of course copy more information than will fit on
the diskette formatted in single density, which has a smaller
capacity than a diskette formatted in enhanced density.

— You cannot copy any single file that occupies more than
707 sectors.

— You may be unable to copy files created with certain data
manipulation programs such as mailing lists, file managers,
and so forth; some such files can be copied only through
diskette duplication. In some cases you may be able to
copy a file but the copy may not work with the program'’s file
manager. Check the manual that came with your programs
to see if this condition applies to any of your files.

If You Have DOS 2.0S Diskette Files

Diskettes formatted and written to using DOS 2.0S are com-
pletely compatible with DOS 2.5. Diskettes formatted in single
density and written to using DOS 2.5 are completely compatible
with DOS 2.0S. In short, there is no difference in format, direc-
tory structure, data storage capacity, file structure, and so forth
between a DOS 2.0S diskette and a single-density DOS 2.5 disk-
ette.

So problems of incompatibility between DOS 2.5 and DOS 2.0S
can arise in only one kind of situation: when DOS 2.0S tries to
read a diskette formatted in enhanced density and written to
using DOS 2.5. The potential problems discussed below are
based on the assumption that you have loaded DOS 2.0S from a
1050 Disk Drive and that you are using the 1050 to manage files
on a diskette formatted in enhanced density by DOS 2.5. In this
situation DOS 2.0S can read from and write to the enhanced-
density diskette with just a few restrictions.

* DOS 2.0S knows nothing about sectors numbered from 720

up. So it will not attempt to write any data to the extended stor-
age capacity of the enhanced-density diskette.

112

By the same token, any extended files stored under DOS 2.5
(i.e., files occupying sectors numbered 720 and up) will be
“invisible” to DOS 2.0S. You will not be able to work with any
such files under DOS 2.0S, nor will they show up in a disk
directory called up under DOS 2.0S. Consider the following
directory listing, as viewed under DOS 2.5:

#1105
EIRES
FILEL
FILEZ
<FILEZ
<FILE4
SEe FREL

If you called up a directory of the same diskette under DOS
2.0S, you would see a somewhat different listing:

wli0s

w1

FILEL
FILE

8 FREE =F

The extended files, marked by DOS 2.5 with brackets, are not
recognized by DOS 2.0S. Note also that DOS 2.0S shows no
free sectors left on the diskette, because in fact the only free
sectors are numbered 720 and up. The dropping of FILE-
3.DAT, which uses sectors numbered both below and above
720, from the DOS 2.0S directory illustrates yet another point:
if any sector of a file is numbered 720 or up, the entire file is
invisible to DOS 2.0S.

On the other hand, those files visible to DOS 2.0S are com-
pletely accessible to it—they may be read, locked, unlocked,
and so forth using DOS 2.0S. And after you work with such
files using DOS 2.0S, the diskette will still be wholly compati-
ble with DOS 2.5, which will again recognize the extended
files invisible to DOS 2.0S.

Caution: Never use any DOS 2.0S ‘‘disk fix”’ program with a
diskette formatted in enhanced density using DOS 2.5. The
program may decide that any ‘“‘invisible’’ files are bad, and
attempt to erase them. The program may aiso destroy the

113

information on the diskette that allows DOS 2.5 to recognize it
as an enhanced-density diskette.

* Because DOS 2.5 extended files are invisible to DOS 2.0S and
will not show up on a directory listing called up under DOS
2.0S, itis possible accidentally to use DOS 2.0S to write a file
to an enhanced-density diskette that already contains an invis-
ible file with the same name. For example, working with the
diskette discussed in the preceding paragraphs, you might
delete FILE1.DAT and write a new file called FILE3.DAT in its
place. If you then called up a directory of the diskette under
DOS 2.5, you would discover two files named FILE3.DAT.
However, DOS 2.5 aliows you to rename just one of a pair of
files bearing the same name—see option E., RENAME FILE,
in Section 3.

Technical Notes

Although a single-density diskette has 720 formatted sectors,
both DOS 2.0S and DOS 2.5 utilize only 719 of them. (This is
because DOS marks sector zero — which does not appear on
810 and 1050 drives — as unavailable, as if it were part of the
boot sectors.)

Several programs are available which count on DOS’s not using
sector 720. Generally, these programs write special information
(often including copy protection methods) directly to sector 720.

On a dual-density diskette, DOS 2.5 manages sectors numbered
from 1 to 1023. Even though DOS 2.5 could easily use sector 720
for afile, it purposely avoids the sector, marking it as already in
use even on a newly formatted diskette. This is done simply to
ensure compatibility with any program which uses sector 720 for
its own purposes.

In the same vein, a dual-density diskette actually consists of 40
tracks of 26 sectors each, for a total of 1040 sectors. However,
due to the inner workings of DOS, it is limited to using sectors 1
through 1023 for files. (This is because DOS uses a 10-bit sector
address, and the highest number that 10 bits can represent is
1023.) In addition, DOS 2.5 uses sector 1024 for the Extended
Volume Table of Contents (also known as the “‘volume direc-

114

tory”’), where it keeps track of the sectors that are invisible to
DOS 2.0S. In no way, though, does DOS 2.5 utilize sector num-
bers 1025 through 1040, so they are available to the user in much
the same way that sector 720 is available to the DOS 2.0S user.

115

APPENDIX I
STRUCTURE OF
A COMPOUND
BINARY FILE

Dooooooooouoooooog

Compound File Structure Using
C. COPY FILE With Append

Byte Decimal Hex Hex
No. No. No. Description Address
1 255 FF Identification Code (PART 1)
2 255 FF
3 0 00 Starting Address (PART 1) $5000
4 80 50
5 31 1F Ending Address (PART 1) $501F
6 80 50
DATA (PART 1)
32 Bytes

38 255 FF Identification Code (PART 2)
39 255 FF

40 32 20 Starting Address (PART 2) $5020
41 80 50
42 143 8F Ending Address (PART 2) $508F
43 80 50
DATA (PART 2)
112 BYTES
117

Byte Decimal

No.

DO~ WN =

38
39
40
41

118

No.

255
255
00
80
31
80

32
80
143
80

Compound File Structure Using
K. BINARY SAVE with Append

Hex
No.

FF
FF
00
50
1F
50

20
50
8F
50

Description
Identifier Code
Starting Address (Part 1)
Ending Address (PART 1)

DATA (PART 1)
32 Bytes

Starting Address (PART 2)
Ending Address (PART 2)

DATA (PART 2)
112 BYTES

Hex
Address

$5000

$501F

$5020

$508F

APPENDIX J
GLOSSARY OF TERMS

Uo0ooooooouUuooooouooo

Address: A location in memory, usually specified by a two-byte
number in hexadecimal or decimal format. (Maximum range is
0—FFFF hexadecimal.)

Alphanumeric: The capital letters A-Z and the numbers 0-9,
and/or combinations of letters and numbers. Specifically ex-
cludes graphics symbols, punctuation marks, and other special
characters.

Array: A one- or two-dimensional set of elements that can be
referenced one at a time or as a complete list by using the array
variable name and one or two subscripts. Thus the array B, ele-
ment number 10 would be referred to as B(10). Note that string
arrays are not supported by BASIC, but you can pick up each
element within a string—for example, A$(10,10). All arrays must
be dimensioned before use. A matrix is a two-dimensional array.

ATASCII: The method of coding used to store text data. In ATAS-
Cll (which is a modified version of ASCII, the American Standard
Code for Information Interchange), each character and graphics
symbol, as well as most of the control keys, has a number as-
signed to represent it. The number is a one- or two-byte code
(decimal 0—255). See the ATAR/ BASIC Reference Manual for
table.

AUTORUN.SYS: Filename reserved by the Disk Operating Sys-
tem.

Baud Rate: Signaling speed or speed of information inter-
change in bits per second.

Binary: Also known as base 2. A number base system using
only the digits 0 and 1.

Binary Load: Loading a binary machine-language object file
into the computer memory.

Binary Save: Saving a binary machine-language object file onto
a disk drive or program recorder.

Bit: Abbreviation of ‘‘binary digit.” The smallest unit of informa-
tion, represented by the value 0 or 1.

119

Boot: This is the initialization program that “‘sets up’’ the com-
puter when it is powered up. At conclusion of the boot (or after
“booting up”’), the computer is capable of loading and executing
higher-level programs.

Break: To interrupt execution of a program. Pressing the
key causes a break in execution.

Buffer: Atemporary storage areain RAM used to hold data for
further processing, input/output operations, and the like.

Byte: Eight bits. A byte can represent one character. A byte has
a range of 0 through 255 (decimal).

ClO: Central Input/Output Subsystem. The part of the operating
system (OS) that handies input/output.

CLOSE: Toterminate access to a disk file. Before you can han-
dle further access to the file, it must be opened again. See
OPEN.

Data: Information of any kind, usually a set of bytes.
Debug: Toisolate and eliminate errors from a program.

Decimal: Also known as base 10. A number base system using
the digits O through 9. Decimal numbers are stored in binary-
coded decimal format in the computer. See Bit, Hexadecimal,
and Octal.

Default: A condition or value that exists or is caused to exist by
the computer until it is told to do something else. For example, in
BASIC the computer defaults to GRAPHICS 0 until another
graphics mode is entered.

Delimiter: A character that marks the start or finish of a data
item but is not part of the data. For example, BASIC uses quota-
tion marks (’’) to delimit strings.

Density: The closeness of space distribution on a storage me-
dium, i.e., the number of sectors per track. Both single and en-
hanced density record 128 bytes per sector.

Destination: The device or address that receives data during
an exchange of information (especially an I/O exchange). See
Source.

Directory: A summary of files contained on a diskette listed by
filename and file size.

120

Diskette: Often called simply a disk. A record/playback medium
like tape, but made in the shape of a flat disk and placed in an
envelope for protection. The access time for a diskette is much
faster than for tape.

DOS: Abbreviation for Disk Operating System. The software or
programs that facilitate use of a disk drive system.

DOS.SYS: Filename reserved by the Disk Operating System.

Drive Number: An integer from 1 to 8 that specifies the drive to
be used.

Drive Specification or Drivespec: Part of the filespec that tells
the computer which disk drive to access. If this is omitted, the
computer will assume Drive 1.

End of File: A marker that tells the computer that the end of a
certain file on disk has been reached.

Entry Point: The address where execution of a machine-
language program or routine is to begin. Also called the transfer
address.

File: Anorganized collection of related data. A file is the largest
grouping of information that can be addressed with a single
name. For example, a BASIC program is stored on diskette as a
particular file, and may be addressed by the statements SAVE or
LOAD (among others).

Filename: The alphanumeric characters used to identify a file.
A total of eight numbers and/or letters may be used, optionally
followed by a period and an extender or extension of up to three
characters.

Filename Extender or Extension: Up to three additional char-
acters used following a period (required if the extender is used)
after the filename. For example, in the filename PHONLIST.BAS,
the letters “‘BAS’’ comprise the extender.

File Pointer: A pointer to a location in a file. Each file has its
own pointer.

Filespec: Abbreviation for file specification. A sequence of
characters which specifies a particular device and filename.

121

Format: To organize a new or magnetically (bulk) erased disk-
ette onto tracks and sectors. When formatted in single density,
each diskette contains 40 circular tracks, with 18 sectors per
track, and in enhanced density, 40 tracks with 26 sectors per
track. Each sector can store up to 128 bytes of data.

Hexadecimal or Hex: Also known as base 16. Number base
system using 16 alphanumeric characters: 0,1,2,3,4,5,6,7,8,9,A,
B,C,D,E,and F.

1/0: See Input.
Indexed Addressing: See Random Accessing.

INPUT: A BASIC command used to request either numeric or
string data from a specified device.

Input: To transfer data from outside the computer (say, from a
diskette file) into RAM. Output is the opposite, and the two words
are often used together to describe data transfer operations:
Input/Output or just I/O. Note that the reference point is always
the computer. Output always means from the computer, while
Input means into the computer.

IOCB: Input/Output Control Block. A section of RAM reserved
for addressing an input or output device and processing data
received from it or for addressing and transferring data to an
output device.

iocb: An arithmetic expression that evaluates to a number be-
tween 1 and 7. This number is used to refer to a device or file.

Kilobyte or K: 1024 bytes. 16K RAM is actually 16 times 1024 or
16,384 bytes.

Least Significant Byte: The byte in the rightmost or low order
position in a number or a word.

Machine Language: The instruction set for the particular micro-
processor chip used in a computer.

Most Significant Byte: The byte in the leftmost or high order
position in a number or a word.

Null String: A string consisting of no characters. For example,
A$ = ‘""" stores the null string as A$.

Object Code: Machine language derived from “‘source code,”
typically from assembly language.

122

Octal: Also known as base 8. The octal numbering system uses
the digits 0 through 7. Address and byte values are sometimes
given in octal form.

OPEN: To prepare a file for access by specifying whether an
input or output operation will be conducted, along with the file-
spec.

Output: See Input.
Parameter: Variables in a command or function.
Peripheral: An l/O device.

POKEY: A custom I/O chip that manages communication on the
serial bus and generates sound on the TV speaker.

Random Accessing: The method of reading data from a disk-
ette directly from the byte and sector where it was stored without
having to read the entire file sequentially.

Record: A block of data, delimited by EOL (End-of-Line, 9B
Hex) characters.

Sector: A sector is the smallest block of data that can be written
to a disk file or read from a file. Each single-density sector can
store 128 bytes of data.

Sequential Accessing: The method of reading each byte from
a diskette file in order, starting from the first byte in the file.

Source: The device or address that contains the data to be sent
to a destination. See Destination.

Source Code: A series of instructions, written in a language
other than machine language, which requires translation in order
to be executed.

String: A sequence of letters and/or characters usually delim-
ited with quotation marks (*’).

System Diskette: An exact copy of an original Master Diskette.
Always use backup copies of your Master Diskette instead of the
original. Keep backup copies of all important data and program
diskettes.

Tokenizing: The process of interpreting textual BASIC source
code and converting it to the internal format used by the BASIC
interpreter.

123

Track: A circle on a diskette used for magnetic storage of data.
Each track has 18 sectors in single density and 26 in enhanced
density, each with 128-byte storage capability. There are a total
of 40 tracks on each diskette.

Variable: A variable may be thought of as a box in which a value
may be stored. Such values are typically numbers and strings.

Write-Protect: A method of preventing a disk drive from writing
on a diskette. Many diskettes are write-protected by covering a
notch on the diskette cover with a small sticker.

124

APPENDIX K
DOS 2.5 AND THE ATARI
130XE RAMDISK

U0ooogoopooooooooaao

The ATARI 130XE Computer is equipped with 131,072 bytes —
128K — of Random Access Memory (RAM), twice the maximum
64K available with earlier model ATARI Computers. The addi-
tional 64K RAM can be useful for many purposes: fast exchange
of screen images for animation, additional storage for large data
bases, and so forth.

You can also use the 130XE’s extra RAM as a very fast ‘‘virtual”’
disk drive. Set up as a ‘‘RamDisk’’ — recognized by DOS 2.5 as
Drive 8 in your system — it can accommodate up to the equiva-
lent of 499 sectors on a diskette. That is about half what you can
store on a diskette formatted in enhanced density.

Of course, the ‘““storage” capacity offered by the RamDisk is
volatile memory, which means that information stored in it will be
lost when you turn off your computer system. So before turning
off your system, you should always be sure that any data cur-
rently in the RamDisk that you want to save permanently is re-
corded on an actual diskette.

However, the RamDisk can be a very convenient tool. It allows
you to switch almost instantaneously between BASIC (or any
other programming language) and DOS, and back again. You
can also use it to work with files *‘stored’” on Drive 8 — a tech-
nique that might prove especially useful when you are transfer-
ring large amounts of data between two programs that are
chained together (that is, when one program RUNs the other).

To Activate the RamDisk

Your DOS 2.5 Master Diskette contains a file called RAM-
DISK.COM that automatically sets up the 130XE’s extra 64K

125

RAM as a RamDisk. (If you do not want to activate the RamDisk
in your 130XE with DOS 2.5, see “If You Do Not Want to Use the
RamDisk,”” below.)

When you boot your 130XE system with a DOS 2.5 Master or
System Diskette containing RAMDISK.COM, DOS will —

¢ Display a message that it is initializing the RamDisk;

¢ Set up your computer’s extra 64K of memory to act very much
as a disk drive, telling DOS to regard it as Drive 8 and

* Copy the DOS file DUP.SYS and establish MEM.SAV (see
Section 3) on the RamDisk, and proceed when necessary to
use the DUP.SYS and MEM.SAV files on the RamDisk rather
than the files of the same name on the Master or System Disk-
ette.

If you wish to expand the usable capacity of your RamDisk, you
may recover the memory used by DUP.SYS and MEM.SAV by —

* Changing the contents of location 5439 ($153F) to ATASCI! 1
— for example, POKE 5439,ASC(‘“1’’); and

* Deleting the files DUP.SYS and MEM.SAV from the ‘‘diskette”’
in Drive 8 — that is, the RamDisk. Use option D., DELETE
FILE(S), on the DOS Menu and enter D8:*.* in response to
the DELETE FILESPEC prompt.

Note: Booting a disk which doesn’t contain DUP.SYS will
cause RAMDISK.COM to initialize the RamDisk, but DUP.SYS
and MEM.SAV will not be moved to the RamDisk.

Using DOS With the RamDisk

Because of the size of the RamDisk, you may not use DOS Menu
option J., DUPLICATE DISK, to copy either a single-density or
enhanced-density diskette to the RamDisk. Instead, you must
copy individual files, taking care that they do not exceed in size
the capacity of the RamDisk. You can ask DOS to duplicate the
contents of the RamDisk on an actual diskette. From then on,

126

however, that diskette will be capable under DOS of accessing
only 499 sectors’ worth of data — though you can always dupli-
cate its contents back to the RamDisk.

If You Do Not Want to Use the RamDisk

If you do not want to activate your ATARI 130XE’s RamDisk, you
can either delete or rename the RAMDISK.COM file on your DOS
2.5 Master or System Diskette. You may then use the 130XE’s
extra RAM for other purposes.

If you have applications for which you do not wish to use the
RamDisk, it is recommended that you leave the RAMDISK.COM
file intact on your DOS 2.5 Master Diskette. You might wish to
make one working copy of DOS (System Diskette) that contains
RAMDISK.COM, and one that does not. Or you can simply re-
name the RAMDISK.COM file on your System Diskette, then
rename it back to RAMDISK.COM when you wish to use it.

127

APPENDIX L
THE DOS 2.5 DISK
dTILITIES

UooobooobonoDoooooooOoo

Your DOS 2.5 Master Diskette contains three new utility pro-
grams in addition to the standard disk utilities handled by the
DUP.SYS file. These three programs, each of which appears on
the disk directory with a .COM extender, function as follows:

COPY32.COM allows you to copy files from diskettes formatted
and written to under ATARI DOS 3 to DOS 2.5 diskettes, convert-
ing the files in the process from DOS 3 to DOS 2.5.

DISKFIX.COM allows you to correct some problems that may
occur with files on DOS 2.5 and DOS 2.0S diskettes. Under cer-
tain conditions, you can also use this utility to recover deleted
files.

SETUP.COM allows you to change certain DOS parameters. You
can also use it to create an AUTORUN.SYS file that will automati-
cally load and run a BASIC program when you boot your system.

Note: RAMDISK.COM is not a disk utility per se. It is used only to
set up the RamDisk on a 130XE. See Appendix K, for details.

Selecting and Loading a Utility

All three utilities are binary files that are loaded and run using
option L, BINARY LOAD, from the DOS 2.5 Menu. For example,
to begin using the COPY32.COM program, with the DOS 2.5
Menu on your screen, you would type L and press (Retun), then
type COPY32.COM as the name of the file to load and press
again.

Specific instructions for using each utility follow.

129

COPY32.COM

Using this utility is much like using the COPY FILE function on
the DOS Menu. After you load the COPY32.COM program, you
are prompted to specify which drive will hold your DOS 3
(source) disk and which drive will hold your DOS 2.5 (destination)
disk. If you have only one drive, type 1 in response to both
prompts. In this case, you will have to swap your DOS 3 and DOS
2.5 diskettes during the copying process. If you have more than
one disk drive, you may select one to hold your DOS 3 diskette
and another to hold your DOS 2.5 diskette. Here is a sample
menu:

COPY 3to2.x

Copy files from a DOS 3 disk to
aDOS 2.5 (or DOS 2.08) disk.
(Hit for drive # to quit.)

On which drive (1-4) is DOS 3 disk? 1
On which drive (1-4) is DOS 2.x disk? 1
Place the DOS 3 disk in drive 1

CAUTION: You will be swapping disks.

Put a write protect tab
on your DOS 3 disk!

Push when ready.

At this point, if you have only one drive, the utility prompts you to
insert your DOS 3 disk in Drive 1: for safety, place a write-protect
tab on your DOS 3 disk so that you will not erase valuable data if
you make an error while swapping diskettes.

If you specified two different drives, the utility prompts you to
insert both your DOS 3 and DOS 2.5 disks.

130

After you insert the diskette or diskettes, press (Start). The COPY-
32.COM program reads the directory of the DOS 3 diskette and
displays the files it contains, sixteen at a time, by number. Press
to see the next sixteen files; when all the files on the disk-
ette have been listed, you have the options to Restart, return to
DOS, or view the files again.

To convert a file, enter the number of the file you wish to convert.
The utility prompts you to confirm your choice by pressing (Start).

When you press Start], the program begins the conversion proc-
ess by reading the specified file from the DOS 3 diskette. After
COPY32.COM reads the entire file (or as much data as it can
accomodate in its memory buffer), it asks you to swap disks if
you specified the same drive for your DOS 3 and DOS 2.5 disks;
with very large files, you may have to swap diskettes several
times. If you are using two drives, the program copies and con-
verts the file in a single operation.

After the file has been copied and converted, press to re-
turn to the listing of files on your DOS 3 diskette, from which you
may choose another file to convert.

If an error occurs during the copy process, COPY32.COM dis-
plays an error number (see Appendix C) and prompts you to
press to restart, or to return to the DOS 2.5 menu.

Note: Unless you have two disk drives, you will be unable to

convert files of more than 124,700 bytes (300 bytes less than the
maximum file length possible under DOS 2.5).

DISKFIX.COM

This program begins by showing you the current drive number,
which is always 1 when the program is first loaded, and a menu
with these five options:

1. Change Drive #

131

2. Unerase File
3. Verify Disk

4. Rename File by #

(8]

. Quitto DOS

Type the number of the function you wish to use but do not press
after typing your choice.

Instructions for using each of the DISKFIX options follow.

Change Drive #

This option lets you choose the drive on which the DISKFIX op-
tions 2, 3, and 4 will act. When you select this option, the utility
prompts you to specify which disk drive you wish to make cur-
rent. Type a number from 1 through 8 (if you press any other key,
it will not be accepted).

Unerase File

Under certain conditions, Unerase File enables you to recover
files that have been deleted. When you delete a file, it is not actu-
ally removed from the disk — DOS just marks its directory entry
as erased, bars the file from normal access, and marks the
space it occupies as available for new files.

Unerase File may also enable you to recover files that were
opened for output (for example, with the command OPEN #1, 8,
0, “D:MYFILE.DAT") but not properly closed for some reason
(for example, if you pressed before closing the file). Such a
file may occupy a part of the disk to which you cannot normally
regain access. Unerase File can be used to access the file.

Note for advanced users: You can recover a file open for output
by unerasing it only if there are no bad links in it.

132

Your chances of using Unerase File for a successful recovery of
a deleted or open file are best if the diskette containing the file
has not been written to at all since the file was deleted or opened
for output. Otherwise, part or all of the file may have been over-
written by new data.

After selecting Unerase File by typing 2, insert the disk contain-
ing the file you wish to recover in the current drive and press
(start]. The utility displays a list of the first 32 filenames on the
disk, each marked with a number from 0 to 31. Each entry has a
“file type’’ code before it. A blank space means the file is in use
and is good. A ““W’’ means that the file is in use but was left open
for output. A ““D’’ means that the file has been deleted. Blank
directory entries appear as ‘‘(unused).”’ Press for a list of
the remaining files on the diskette — up to 32 more will be dis-
played, numbered 32 to 63.

Enter the number of any filename preceded by a W or D file type
code. If you press or enter a number higher than 63, the
message You didn’t choose anything! appears. If you select an
unused entry, the message That file is unused. appears.

If the file you specify has not been erased, a message to that
effect appears and you must press to resume. Otherwise,
you are shown a numeric entry type code for the file, the fi-
lename, the file length, and the starting sector in both hexadeci-
mal and decimal notation. Type code 80 indicates a deleted file,
and 43 means open for output. The utility also prompts you to
confirm your choice by pressing Y. Type Y to recover the speci-
fied file.

Before actually recovering (‘‘unerasing”) a file, the program first
verifies all files on the diskette (see the next subsection for de-
tails on this process). Unless problems are encountered, the
recovered file will also be verified and the directory sector con-
taining its entry will be written back to the diskette with a valid file
type code.

After the last file has been verified, the Volume Table Of Contents

(VTOC) is written to the diskette and the utility prompts you to
press to return to the DISKFIX.COM menu.

133

Verify Disk

This function verifies the soundness of every file on a disk. When
you select it from the DISKFIX.COM menu, the utility prompts
you to insert the disk you wish to verify in the current drive and
press (Start]. Verify Disk tests the validity of each file, and keeps
track of each sector. Finally, a new Volume Table of Contents (see
below) is written back to the disk.

How the Verification Process Works

DOS 2.5 uses a small portion of every disk, called the Volume
Table of Contents (VTOC), to keep track of available sectors on
the disk for file allocation purposes. The VTOC is written to each
time afile is created, erased, or changed in length. The verifica-
tion process compares the information contained in the disk
directory with actual disk file allocation, makes changes (or dis-
plays error messages) as necessary, and then writes a new
VTOC to the disk. This process not only checks the validity of
files, it also frees up sectors that may previously have been un-
available. Also, since a VTOC is written with each disk verifica-
tion, you can use the Verify Disk function to repair a disk with no
existing VTOC.

During disk verification, any files left open for output (preceded
by the W type code in the Unerase File directory) are deleted and
their type code changed to D, and a message to this effect ap-
pears onscreen. If the file length is zero, as in the case of a file
that has the same start sector as a file written later, you will not
be able to unerase it — instead, you will see the message Bad
file - deleting. Otherwise, you should be able to recover at least
part of the file. Each sector of every file on the disk is checked to
ensure that it belongs to a proper file. If a bad file link in a file with
a good directory entry is encountered, the message Bad link in
file - truncating appears, and only part of the file will be recov-
ered. If an I/O error occurs during reading or writing of the disk,
the appropriate error number appears — see Appendix C for an
explanation and possible solutions for errors.

Rename File by #

This function is handy for renaming the second of two identically
named files on a diskette, since you choose the file to be re-

134

named by number, not by name. It can be used to rename a file
whether or not the file is locked. To rename the first of two identi-
cally named files on a diskette, simply use DOS Menu selection
E., RENAME FILE.

After selecting the Rename File by # function, place the diskette
containing your identically named files in the current drive and
press (Start]. A numbered directory (as described in the Unerase
File subsection) appears. Next, enter a filename for the file to be
renamed — the directory information for that file (also described
in the Unerase File subsection) appears. In addition, you are
prompted to enter the New file name. Type in the new filename,
following normal DOS conventions — you may use up to eight
characters, optionally followed by a period and an extender of
up to three characters — and press (Return).

When the file has been successfully renamed, the utility prompts
you to press to return to the DISKFIX.COM menu.

Quit ToDOS

After you select this option, the prompt Return to DOS 2.5 (Y/N)
appears. Press Y to return to DOS 2.5 or N to return to the
DISKFIX.COM menu.

SETUP.COM

When you load the SETUP.COM utility, this menu appears:

This program will work with and
affect the diskette inserted in
drive number 1 unless you use
option 1 in the menu below!

135

Choose an option:

1. Change current drive number
2. Change system configuration
3. Setup an AUTORUN for Boot
0. Quit — Return to DOS

Your choice (0, 1,2, OR3)?

Menu selections 1 and 0 are used for ‘‘housekeeping” purposes.
The two main functions of this utility are menu selections 2 and 3.
Press the number key that corresponds to the function you wish
to use.

Change Current Drive Number

Options 2 and 3 on the SETUP menu use and change data and
files on the diskette in the current drive, which is always Drive 1
unless you change it using option 1. If you have only one disk
drive, you cannot change the current drive number. With multi-
drive systems, the current drive number can be 1, 2, 3, or 4, de-
pending on how many drives you have.

Change System Configuration

When you select this option from the SETUP menu, you are pre-
sented with this menu:

‘Change System Configuration ’

Current System Configuration:
Active Drives: 1 2

Up to 3 files open simultaneously.
Disk writes occur with verify,

Do you want to change any part of
that configuration (Y/N) ?

136

If you press Y, you will be presented with the opportunity to
change each of the options displayed.

Since under DOS 2.5 each ‘‘active’’ drive uses 144 bytes of
memory and each possible simultaneously open file uses a 128-
byte buffer, you may be able to save memory with this option by
changing the number of drives and files in use. Alternatively, you
may have a program that uses more than the “‘normal’’ two
drives and three files. By enlarging the capacity of DOS, you lose
a little memory but gain a lot of disk power. See Appendix G for
further information on this topic.

Keep in mind, however, that if you choose four active drives and
you are using an Atari 130XE Computer with the RamDisk, or if
you choose only one open file buffer, you will not be able to use
certain DOS Menu functions:

C. COPY FILE
D. DELETEFILE
O. DUPLICATE FILE

When DOS 2.5 writes to a diskette, it normally reads back (veri-
fies) each sector as it is written. For faster disk output — al-
though perhaps with slightly less reliability — use this option to
omit the verifying process. See Appendix F for further informa-
tion.

Making Changes Permanent

After you make changes to your system configuration, a New
System Configuration screen such as this one appears:

lNew System Configuration

Current System Configuration:

Active Drives: 1

Up to 3 files open simultaneously.

137

Disk writes occur with verity.

Are you sure this configuration
is what you want (Y/N)?

Current system configuration has
been changed. Do you want to
make these changes to the disk
currently in drive 1 (Y/N) ?

The first prompt on this screen allows you to confirm your new
configuration. The second prompt allows you to make the
changes “permanent.” If you type Y, the SETUP.COM utility
writes your configuration changes to the DOS.SYS file on the
diskette in the current drive. Otherwise, the changes are made
only to the DOS currently in memory.

Note: If DOS.SYS is not on the diskette in the current drive, if
DOS.SYS is locked, or if the diskette is write-protected, you will

not be able to make permanent changes to the DOS System or
Master Diskette.

Set Up An AUTORUN for Boot

When you boot your system with DOS 2.5, the first thing that
happens is that the DOS.SYS file is loaded into memory and run.
Before loading DUP.SYS or transferring control to BASIC or a
cartridge, if present, DOS determines whether a file named
AUTORUN.SYS exists on the boot disk. If so, the file is loaded
into memory; if it was saved with a run vector it is also run (see
DOS Menu selections K and L, BINARY SAVE and BINARY
LOAD, in Section 3).

You can use option 3 on the SETUP utility menu to create an
AUTORUN.SYS file on the diskette in Drive 1 that will perform
either or both of these two functions:

* Load the RS232 handler from an ATARI 850 Interface Module

(if the module is connected and turned on when you boot your
system), and/or—

* Load and RUN a BASIC program from the boot disk.
138

—

When you choose option 3 from the SETUP menu, this screen
appears:

‘Make an AUTORUN.SYS program filel

When the disk currently in drive
number 1 is next booted, what
do you want to happen?

1. The RS$232 (R:) drivers for the
ATARI 850 Interface Module are
loaded and made active.

2. A BASIC program will automatically
load and RUN.

3. Both actions (1. and 2. above)
will occur.

0. None — quit to main menu.
Your choice (0,1,2,0R3)?

Press the number key corresponding to the function or functions
you want your AUTORUN.SYS file to perform.

If you choose 1, the AUTORUN.SYS file is automatically written
to the diskette in the current drive. If you choose 2 or 3, this
screen appears:

Please enter the name of the BASIC
Program that you wish to have
automatically RUN when this disk
is next booted.

Do NOT enter the drive specifier
(i.e., do notuse D:, D1:, etc.)
but DO use the proper extensi;.')n
(e.g., .BAS, .SAV, etc.) if you
SAVEd it with an extension.

139

REMEMBER: The BASIC program that you
wish to ‘AUTORUN’ in this way
MUST be SAVEd on the same disk
which receives this AUTORUN.SYS
program file!

Now enter your BASIC program’s name
here> >

As the screen reminds you, your BASIC program must be SAVEd
on the diskette that will contain your AUTORUN.SYS file; other-
wise, you will get an error message when you try to write your
AUTORUN.SYS file to the diskette (though the SETUP utility will
give you the opportunity to proceed anyway or abort).

Enter the filename of your BASIC program, but do not include the
device spec, and press (Return). The AUTORUN.SYS file is auto-
matically written to the diskette in the current drive when you

press (Retum).

If the BASIC program isn’t on the AUTORUN.SYS disk when itis
booted (DOS.SYS must also be on the disk), or if it has not been
SAVEd, you will get an error message.

140

APPENDIX M
ATARI 1050 DISK DRIVE
SPECIFICATIONS

Oooooboo0booooooonong

Control Logic
Diskette Format
Data Storage
Dimensions
Height
Width
Length
Weight
Input Voltage
Power Consumption
Standby
Operation
Start Up
Temperature
Operating
Storage
Relative Humidity
Operating
Storage
Altitude

Number of Tracks:

Number of Sectors
per Track

Total Number of Sectors

Number of Sectors
available to DOS

DOS Overhead, in Sectors

Numbers of Sectors Usable
for File Storage

Number of Bytes per
Physical Sector

Number of Bytes of Overhead
per Logical Sector

Number of Usable Bytes of
File Storage per Drive

Encoding Method
Transfer Rate

Access Time
Track to Track (maximum)
Motor Start (maximum)

6507 Microprocessor
Dual-density, single-sided, 5 1/4 inch diskette

127K

3.50 Inches
7.40 Inches
12.00 Inches
6 pounds

8.52 Volts AC +12% @ 60 +3Hz

15 Watts
30 Watts
50 Watts

75.6-129.6F
21.6-165.6F

20%-80%
5%-95%
0-9842.5 feet
Dual
Density
40
26

1,040
1,023

13
1,010

128
3
126,250
MFM
250,000BPS

40 MS
1000 MS

Single
Density RamDisk
40 N/A
18 N/A
720 512
719 511
12 12
707 499
128 128
3 3
88,375 62,375
FM
125,000 BPS
40 MS
1000 MS

141

INDEX

Oo0oOoooooooooocooobcoo

A

Absolute disk sector number, 70

Accessing damaged files, 79-80

Address, 47, 48, 49

Additional disk drives, 3

Assembler editor, 34, 36, 47, 48,
50, 53

Assembly language, 34, 47-49,
57, 58, 81

ATASCII, 63

AUTORUN.SYS File, 80-81

Avar, 68

BASIC, 7-8, 29, 34, 56, 63
Built-in, 8, 34

BASIC commands, 23, 63

BASIC error messages,
(Appendix C) 91

BASIC files, 36

BASIC words used, (Appendix A)

83
BINARY LOAD, 12, 50, 54

BINARY SAVE, 12, 47, 49, 50-53

Boot, 8,9, 80

Boot errors, 8, 9
Buffers, 36, 45, 66, 76
Byte, 70, 72, 74

Cc

ClO, 67,76

CLOSE, 68

CMDNO, 77

Compound binary file structure,
50, (Appendix |) 117

Control blocks, 66-67

COPY FILE, 11, 16, 24, 25-26,
35-37,50, 55

COPY32.COM, (Appendix L)
130

CREATE MEM.SAV, 12, 55-58
Creating a System Diskette,
14-16

D

Daisy-chaining, 3

Decimal, 48, (Appendix E) 103

Defaults, 13, 20, 32

DELETE FILE(S), 11, 24, 27,
38-39

Destination diskette, 14, 15,
45,59

Destination device, 20, 35

Device code, 19, 20

Direct accessing, 70-72

DISK DIRECTORY, 10, 13, 22,
30, 42

Disk drives
ATARLI 810, 9, 17, 35, 43, 44,
45, 46, (Appendix H) 111
ATARI 1050, 1-2, 7, 17, 35, 45,
46, 61, (Appendix M) 141

Diskettes
Caring for, 4
Duplicating, 14-16
Formatting, 17-18
Labeling, 5

DISKFIX.COM, (Appendix L)
131

DOS commands, 10-12

DOSfiles, 14

DOS menu, 10, 29-30, 77

DOS 2.0S, 31, 42, 43, 45,
(Appendix H) 111

DOS 3, 33, (Appendix L) 130

DOS.SYS, 14, 24, 32

Drive codes, 3,9

Drive numbers, 4, 35

DUPLICATE DISK, 11, 14-16,
44-47,55

143

DUPLICATE FILE, 12, 24-25,
55, 59

Duplicating a diskette
with single disk drive, 45-46
with multiple disk drives,
46-47

DUP.SYS, 14, 24, 55-56,
57-59

E

END command, 68

End of file, 48, 67

End of line (EOL), 75

Enhanced density, 9, 11, 17, 18
43, 46, 72, (Appendix H)
111

ENTER command, 63, 65

Error Messages, (Appendix C)
91

Extenders, (see Filename
extenders)

Exp, 69

F

Files, 19, 30, 31
Backup, 26, 35
Binary, 36, 47, 57-58
Compound, 35, 48, 50
Copying, 24-26
Erasing, 27

Filenames, 19, 20-21, 27, 30, 33,
39-40, 59-60

Filename extenders, 19, 20-21,
30, 33, 35, 38, 59-60

Filespecs, 19, 26, 27, 35, 65, 67

FORMAT DISK, 11, 1719, 41,
43-44, 61

FORMAT SINGLE, 12, 1718,
43, 61

Formatting a diskette
In enhanced density, 17-18, 43
In single density, 17-18, 43

144

G

GET command, 74-75

GET/BYTE program, 79-80

Glossary of terms, (Appendix J)
119

H

Hexadecimal, 47, 54,
(Appendix E) 103

INIT address, 47, 50, 53
INPUT command, 68-69, 75
I0CB, 49, 66-67, 70

#iocb, 67

L

Labeling disk drives, 4
Labeling diskettes, 5, 15
LIST command, 36, 63, 65
LOAD binary file, 57-59
LOAD command

BASIC, 23, 63, 64, 66

DOS, 23, 50
LOCKFILE, 11, 40, 41

Machine language, (see
Assembly language)

Master Diskette, 7,9, 13, 14-17

Memory maps, (Appendix D) 101

MEM.SAV, 34, 45, 46, 55-56,
57-58

N
NOTE command, 70-71, 72

(o]
OPEN command, 67, 68

P

Parameters, 29, 30, 32, 35, 39,
47-49, 67

POINT command, 70, 72-73

PRINT command, 68, 69-70, 75

Printing a disk directory, 32-33

Prompts, 10, 12-13, 29

PUT command, 74-75

R

RAM (Random Access Memory)
15, 34, 46, 48, 53-57, 64,
65, 80

RamDisk, (Appendix K)
125

RAMDISK.COM, (Appendix K)
125

Responses, 12-13

RENAME FILE, 11, 39-40

RUN AT ADDRESS, 12, 48, 53,
54,58

RUN CARTRIDGE, 10, 22-23,
34,58

RUN command, 66

S

SAVE command
BASIC, 23, 36, 63, 64-65

Sector, 14, 17, 30-31, 35, 43, 44,
70,79

SETUP.COM, (Appendix L)
135

Single density, 35, 43, 46,
(Appendix H) 111

Source device, 20

Source diskette, 14, 15, 25,
45,59

STATUS command, 76

String, 69, 70

Svar, 68

System Diskette, 9, 14-16

T

Tokenized files, 36, 63, 65
Track, 17
TRAP statement, 74-75

U

UNLOCK FILE, 11, 42
Untokenized files, 63, 65

v

Variable, 63
Verification prompt, 38

w

Wild cards, 21, 26, 27, 30, 35, 38,
39-40, 59
WRITE DOS FILES, 11, 16, 42-43
Write-protecting
diskettes, 16-17, 45

X
X110 command, 76-79

145

CUSTOMER SUPPORT

ooDooDooooooDooooaoooan

Atari Corp. welcomes any questions you might have about your
1050 Disk Drive or about any other ATARI Computer product.
Write to:

Atari Customer Relations
P.O. Box 61657
Sunnyvale, CA 94088

Please write the subject of your letter on the outside of the
envelope.

Or contact your local Atari User Group. They are an outstanding
source of information on how to get the most from your ATARI
Computer. To receive a list of User Groups in your area, send a
self-addressed stamped envelope to:

ATARI User Group List
P.O. Box 61657
Sunnyvale, CA 94088

147

ERROR ERROR
CODE NO CODE MESSAGE

2 Insufficient Memory
3 Value Error
- Too Many Variables
5 String Length Error
6 Out of Data Error
7 Line Number Greater Than 32767
8 Input Statement Error
9 Array or String DIM Error
1 Floating Point Overflow/Underflow Error
12 Line Not Found
13 No Matching FOR Statement
14 Line Too Long Error
15 GOSUB or FOR Line Deleted
16 RETURN Error
17 Syntax Error
18 VAL Function Error
19 LOAD Program Too Long
20 Device Number Larger Than 7 or Equal to 0
21 LOAD File Error
128 BREAK Abort
129 I0CB* Already Open

130 Nonexistent Device Specified
131 I0CB Write-Only
132 lllegal Handler Command

133 Device or File Not Open
134 Bad IOCB Number

135 I0CB Read-Only Error
136 End of File

137 Truncated Record

138 Device Timeout

139 Device NAK (not acknowledged)

140 Serial Frame Error

141 Cursor Out of Range for Particular Graphics Mode
142 Serial Bus Data Frame Overrun

143 Serial Bus Data Frame Checksum Error

144 Device Done Error (invalid ‘“done’’ byte)

145 lllegal Screen Mode

146 Function Not Implemented in Handler

147 Insufficient RAM for Selected Graphics Mode
160 Drive Number Error

161 Too Many OPEN Files (no sector buffer available)
162 Disk Full (no free sectors)

163 Unrecoverable System Data I/O Error

164 File Number Mismatch

165 File Name Error

166 POINT Data Length Error

167 File Locked

168 Command Invalid (special operation code)

169 Directory Full (64 files)

170 File Not Found

171 POINT Invalid

172 Attempt to Append to DOS 1 File Using DOS 2.5
173 Bad Sectors at Format Time

*IOCB refers to Input/Output Control Block.

NATARI

Sunnyvale, CA 94086
©1985 ATARI CORP. All Rights Reserved.

Printed in U.S.
C0O72033-001 REV.

A.
A

