

DISK OPERATING SYSTEM II
REFERENCE MANUAL

JI,-
ATARI®

A Warner Communications CompanyCI

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Computer Division. However,
because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the accuracy
of printed material after the date of publication and cannot accept responsibility for errors or omissions.

Reproduction is forbidden without the specific written permission of ATARI, INC., Sunnyvale, CA 94086. No right to reproduce this docu-
ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation.

PRINTED IN SINGAPORE MANUAL AND PROGRAM CONTENTS ©1981 ATARI, INC

PREFACE

The ATARI® Disk Operating System II (DOS II) Manual has been structured for
two levels of users. The new user will find DOS II explained in well-defined ter-
minology and sequential operating procedures. However, the new system user
should make the following preparations:

• Read the ATARI 4OO™ or ATARI 800™ Computer Operator's Manual.

• Read the ATARI 81O™ Disk Drive or ATARI 815™ Dual Disk Drive Operating
Manual.

• Acquire some familiarity with an ATARI programming language (preferably
BASIC)

As the new user becomes familiar with DOS II in Sections 1 through 4, he or she
may then explore Sections 5 and 6, which are designed for the more experienced
user.

The more experienced user is one who has worked with AT ARI DOS I (9/24/79 ver-
sion) or has prior knowledge of the AT ARI Personal Computer System, AT ARI
BASIC, and possibly assembly and other programming languages.

For both levels, explanations are followed by graphics whenever possible. Our in-
tention is to present the material in the clearest, most concise way possible for
users at each level.

Notes and terminology used with DOS II can be found in Appendix B; a glossary
of terms is available in Appendix J; and the use of BASIC commands with DOS II
is detailed in Section 5.

The experienced user should read Appendix I which explains the major dif-
ferences between DOS I and DOS II, especially noting the addition of the MEM.
SAY function.

Preface v

CONTENTS

PREFACE v

HOW TO USE THIS MANUAL XI

1 GETTING STARTED WITH DOS \I 1

Setting Up 1
Adding More Disk Drives 2
Setting Drive Codes 2
Labeling Disk Drives 3
Inserting a Diskette 3
What Is a DOS Menu? 4
How Do You Call Up a DOS Menu? 4
DOS II Menu Options 5

2 DISKETTES 9

The Master Diskette 9
DOS.SYS File 9
DUP.SYSFile 9
AUTORUN.SYS File 9

ATARI810 Formatted Diskettes II 9
How To Format a Diskette 10
Making a System Diskette From Your

Master Diskette 12
Creating a System Diskette With the ATARI

810™ Disk Drive 12
Creating a System Diskette Using an ATARI

815™ Dual Disk Drive 13
Write-Protecting Your Diskettes 14
Labeling Diskettes 15
Single-Density and Double-Density Diskette
Recording 15

Which Diskettes To Use 16
How To Store Diskettes 16

3 USING DOS II 19

Identifying Your Diskette Files 19
Filename Extenders and Their Use 19
Wild Cards 21
Boot Errors 22
Saving, Loading, and Running Programs 23

Contents vii

4 SELECTING A DOS MENU OPTION 27

A. Disk Directory 27
Parameters for the Disk Directory
Option 28

B. Run Cartridge 29
C. Copy File 30
D. Delete File 32
E. Rename File 32
F. Lock File 35
G. Unlock File 35
H. Write DOS File 35
I. Format Diskette 36
J. Duplicate Disk 37

Duplication Using a Single Disk Drive 37
Duplication Using Multiple Disk
Drives 38

K. Binary Save 39
Advanced User Information About
Optional Parameters 39

Using Binary Save With Optional
Parameters 40

Structure of a Compound File 41
L. Binary Load 43
M. Run at Address 44
N. Create MEM.SAV 44

Why Have a MEM.SAV File? 45
Using MEM.SAV to Write Assembly
Language Programs 45

Using MEM.SAV to Load Binary
Files 46

O. Duplicate File 47

viii Contents

5 MORE USER INFORMATION
BASIC Commands Used With DOS
Tokenized and Untokenized Files
LOAD
SAVE
LIST
ENTER
RUN

Input/Output Control Blocks
10CB's With Input/Output Commands
. Using OPE N/CLOSE Commands
Using INPUT/PRINT Commands

49

49
49
49
50
50
50
51
51
51
51
53

Direct Accessing With the NOTE/POINT
Commands 54

Using the PUT/GET Commands 57
Using the STATUS Command 58
Substituting the XIO Command for DOS
Menu Options 60

Saving and Loading Programs and Data
With ATARI BASIC 62
LIST and ENTER 63
OPEN and CLOSE 66

Accessing Damaged Files 67
The AUTORUN.SYS File 67

6 ADDITIONAL INFORMATION
ABOUT THE DISK DRIVE SYSTEM 69

ATARI Diskettes 69
ATARI Disk Drive 69
ATARI 815 Disk Drive 69
Disk Drive Operation 70

APPENDICES 71
A Alphabetic Directory of Basic Words Used

With Disk Operations 71
B Notes and Terminology Used With DOS II 73
C Basic Error Messages and How To Recover 75
D DOS II Memory Map 81

For 32K Ram System
E Hexadecimal-to-Decimal Conversion Table 83
F How To Speed Up Data Transfers to Disk

Drive 85
C How To Increase User RAM Space 87
H Major Differences Between DOS I (9/24/79)

and DOS II 89
Structure of a Compound File 91
C lossary of Terms 93

INDEX 99

ILLUSTRATIONS
1-1 Disk Drive Configurations Available 1
1-2 Drive Code Settings 2
1-3 Inserting a Diskette Into a Disk Drive 3
1-4 The DOS II Menu 4

Contents ix

2-1 A Formatted Diskette 10
2-2 Write-Protecting a Diskette 15
2-3 Correct Diskettes for Your Disk Drive 16

3-1 Structure of a Filespec 20
3-2 Examples of Legal and Illegal Filenames 20
3-3 DOS Menu Options That Can and Cannot Use

Use Wild Cards 21
3-4 Boot Errors 22
3-5 Sample Interest Program 24

4-1 Using the Disk Directory Option 29
4-2 Using the Copy File Option 32
4-3 Using the Delete File Option 33
4-4 Using the Rename File Option 34
4-5 Using the Lock File Option 35
4-6 Using the Unlock File Option 35
4-7 Using the Write DOS File Option 36
4-8 Using the Format Disk Option 36
4-9 Using the Duplicate Disk Option With

Single Disk Drive 38
4-10 Using the Duplicate Disk Option With

Dual or Multiple Disk Drives 38
4-11 The Most Elementary Use of Binary Save 39
4-12 Six-Byte Header Table for Binary Save 39
4-13 Using Binary SaveWith Optional Parameters 40
4-14 Using Binary Save to Save Compound Files 41
4-15 Converting an Existing Load-Only File to a

Load-and-Go File 43
4-16 Using the Binary Load Option 43
4-17 Using the Run at Address Option 44
4-18 Creating a MEM.SAV File 44
4-19 Example of MEM.SAV Usage 45
4-20 Using the Duplicate File Option 48

5-1 Example of Program Chaining 50
5-2 Explanation of OPE N Statement Parameters 52
5-3 Example of Opening and Closing a File 52
5-4 Sample INPUT/PRINT Program 53
5-5 Sample NOTE Program 54
5-6 Sample Run of NOTE Program 55
5-7 Sample POINT Program 56
5-8 Sample Run of POINT Program 57
5-9 Sample PUT Program 57
5-10 Sample GET Program 58
5-11 Sample Run of PUT/GET Program 58
5-12 Sample STATUS Program 60

x Contents

5-13 Sample XIO Program
5-14 Sample Interest Program
5-15 Sample Run of Interest Program
5-16 Sample Program to Create a Data File
5-17 Run of Sample Data File
5-18 The Information Stored on Diskette
5-19 Get Byte Program
5-20 An AUTORUN.SYS Example for the

Advanced User

62
64
64
65
66
66
67

68

Contents xi

HOW TO USE THIS MANUAL

This manual has been developed with the user in mind. Each section of information
represents one phase of the second version of the AT ARt Disk Operating System
(DOS II). The newcomer to DOS can easily find the information needed to get
started with DOS II without feel ing encumbered by extraneous information. The
experienced user, however, can quickly find and use the data required to perform
more complex operations.

FOR THE NEW DOS USER

Section 1 explains how to use this manual and the procedures for the most elemen-
tary operations:

• Definition of DOS

• Setting up the system

• Explaining the DOS Menu

Sections 2 and 3 discuss and explain everything about your diskettes from format-
ting to storage. The novice to DOS should read through Sections 1 and 2 before sit-
ting down to work. This will give you an opportunity to become familiar with what
you are to do.

FOR THE NOVICE AND MORE EXPERIENCED USER
Section 3 starts your involvement with DOS II, explaining how to identify your
diskette files using filenames and filename extenders; this section also introduces
you to Loading and Saving programs.

Section 4 is the crossover point between the new and more experienced user, and
has a detailed description of each DOS Menu option and how to use it. Some of
these options will only be of interest to users who are familiar with the Assembler
Editor cartridge and the hexadecimal system.

FOR THE MORE EXPERIENCED USER

Section 5 reviews the BASIC commands used with DOS II and gives sample pro-
grams showing the I/O commands in actual use. Each command format is also
followed by an example showing the types of data going into each parameter. Sec-
tion 6 contains further information about AT ARt Disk Drives and diskettes (which
may be of interest to both levels of users), along with details about storing and re-
trieving data.

The balance of the manual contains a glossary of terms and additional information
for the advanced user such as:

• Memory maps

• Errors
• Saving RAM space

How to Use This Manual xiii

SETTING UP

ADDING
MORE DISK
DRIVES

1
GETTING STARTED WITH DOS II

DOS (pronounced doss) is an acronym for Disk Operating System. Without a DOS,
your AT ARI® Personal Computer System cannot communicate with your AT ARI
810™ Disk Drive. The DOS consists of comprehensive utility routines that allow
you to:

• Store programs on diskette

• Retrieve programs from diskette

• Create and add to data files needed by programs

• Make copies of disk files

• Delete old files from a diskette

• Load and save binary files (for the advanced user)

• Move files to and from memory, the screen, diskette, and printer.

If you have never used a DOS before, you will find the ATARI DOS II simple to un-
derstand and easy to use. If you previously used the AT ARI DOS I, you will find dif-
ferences in loading DOS II and changes to both the menu options and their com-
mand parameters. These changes make DOS I I more advantageous because you
have more available user memory space and greater flexibil ity than with the
9/24/79 version of DOS I (see Appendix H).

To start, you must attach your ATARI 810 Disk Drive or ATARI 815™ Dual Disk
Drive to your AT ARI 400™ or AT ARI 800™ Personal Computer System, making
sure your computer has at least 16K Random Access Memory (RAM). For complete
instructions on setting up your equipment, please refer to your A TARI 400 or
A TARI 800 Operator's Manual. The procedures for attaching the AT ARI 815 Dual
Disk Drive and the AT ARI 810 Disk Drive to your AT ARI Personal Computer
System are contained in the respective Disk Drive Operator's Manuals.

Should you want to attach additional AT ARI Disk Drives to your personal com-
puter system, you do so by "daisy-chaining." In the back of each AT ARI Disk Drive
are two outlets (labeled I/O PERIPHERAL); attach the I/O cord from your second
disk drive to Drive 1. Then attach the other cord from Drive 1 to the computer con-
sole. Figure 1-1 shows you some of the different disk drive configurations available.

Getting Started with DOS II 1

f'HnI i c-- '

:L ---II!i
,.,..mm,WVI"II'ffi'fi'fmfff««N"",

..-r
:m:.j

" .o. i\ .\1
lHREE AlARI 810
DISK DRIVES

lWO AlAR I 815
DUAL DISK DRIVES

AlAR I 815 and AlARI 810
DISK DRIVES

Figure 1-1 Disk Drive Configurations Available

SETTING
DRIVE CODES

Looking at the back of your ATARI 810 Disk Drivels), you will see a hole with two
tabs. The white and black tabs must be moved on each drive according to that
drive's designation. Refer to Figure 1-2a for the proper drive code setting. The back
of your AT ARI 815 Dual Disk Drive has a dial you must rotate to the proper posi-
tion to set the drive code setting (see Figure 1-2b). If you have only one ATARI 815
Dual Disk Drive, the top drive is always set to 1 and the bottom drive set to 2. It is
important to make sure that each drive has a separate drive code setting.

I/O CONNECTORS
(,

I • • • •••••••••• 1 I
••••••• ••• • • • @ ORIVE COOE NO.

,o NO. 1 NO."

NO.:I NO. 4

(aJ A TAR/ 810 Disk Drive

I]••••••• ••• • • •I [• • • ••••••••••

,,._--- I/O CONNECTORS -----..,

• [----I_-------'

ORIVE COOE NOS.

(b] ATAR/815 Dual Disk Drive

Figure 1-2 Drive Code Settings

2 Getting Started with DOS' I

LABELING YOUR
DISK DRIVES

INSERTING A
DISKETTE

Once you have properly set the drive codes, label each disk drive with its ap-
propriate number so you will not make a mistake when using disk drive functions.
It is imperative that your Master or System Diskette ALWAYS be placed in Disk
Drive 1.

Inserting a diskette into an ATARI Disk Drive is a simple, but very important pro-
cedure. If the diskette is improperly positioned, it can cause boot (starting-up) er-
rors during DOS loading procedures, and can also damage the diskette.

Turn on the disk drivels), and wait for the BUSY light to go off. Insert the diskette as
follows:

1. Remove the diskette from its protective paper sleeve.

Caution: Hold the diskette ONLY by its black, sealed envelope. DO NOT touch
any exposed surfaces of the diskette, as this will impair or destroy its read/write
capabilities. DO NOT hold the diskette by placing your fingers through the
center hole. DO NOT try to remove the diskette from its black, sealed
envelope.

2. Hold the diskette so the labeled side is up, with the label toward you, and the
arrow on the label is pointing toward the disk drive door (see Figure 1-3). Also,
if your diskette has a write-protect notch, this should be on your left. Please
note that your Master Diskette does not have a write-protect notch because it
is automatically write-protected at the factory.

Figure 1-3 Inserting a Diskette Into a Disk Drive

3. Open the door to the disk drive (upper drive if you have an ATARI 815 Dual
Disk Drive) and gently but firmly slide in the diskette.

4. Close the disk drive door.

Getting Started with D05 II 3

WHAT IS
A DOS
MENU?

HOW DO YOU
CALL UP
A DOS MENU?

4 Getting Started with DOS II

The DOS Menu is loaded into your computer from your Master Diskette, which is
always inserted into Disk Drive 1. The DOS Menu is similar to a restaurant menu; a
selection of applications is presented to you via your television screen. You make
your selection by typing the appropriate code letter and pressing Your
selected application is now available for use.

The DOS II Menu selections for both the ATARI 810 Disk Drive (single density-
128 bytes per sector) and the ATARI 815 Dual Disk Drive (double density-256
bytes per sector) are identical. The only difference is the version designation on the
screen as explained below:

• Single Density (Used on the ATARI 810 Disk Drive): You will see a Version 2. OS
in the upper right corner of your screen. The S stands for single density

• Double Density (Used on the ATARI 815 Dual Disk Drive): You will see a Version
2. OD in the upper right corner of your screen. The D stands for double density

After you have your television set turned on, your Master Diskette inserted into the
disk drive, and your disk drive turned on, you are ready to load DOS II into the
computer memory as follows:

With a Cartridge Installed

When you turn your computer on:

1. The BUSY light on the disk drive will go on during the loading process DO
NOT attempt to remove the diskette while this light is on. If you have inserted
the ATARI BASIC cartridge, a READY prompt will appear on the screen once
DOS II is loaded. (If you have inserted the Assembler Editor cartridge, the
prompt will be EDIT.) This completes the first part of the loading procedure

2. Type DOS and press ,,,,. .' The DOS II Menu will display on the screen (see
Figure 1-4). This the second part of the loading procedure.

Figure 1-4 The DOS 1/ Menu

THE DOS II
MENU OPTIONS

With a cartridge present, the first part of the load brings in the FILE MANAGE-
MENT SUBSYSTEM and MINI-DOS. The second part brings in the DISK UTILITY
PACKAGE and the DOS Menu.

With No Cartridge Installed

When you turn your computer on, DOS II will load entirely without user inter-
action. The BUSY light on the disk drive will go on during the loading process. DO
NOT attempt to remove the diskette while this light is on. The DOS Menu will be
displayed automatically once DOS II is loaded.

After you make a code letter selection, a prompt message will display on the
screen requesting information from you. This capability makes it a "self-prompt-
ing" menu. The prompt message that appears most frequently reads:

SELECT ITEM OR RETURN FOR MENU

This means the system waits for you to do one of the following:

• Type in one of the alphabetic letters and press mi'i.!Xtrlto bring up your selection,
or

• Press which redisplays the DOS Menu.

Below are the DOS II Menu options and a brief explanation of what they do. You
are advised NOT to use these options until you understand them thoroughly (a
detailed explanation appears in Section 4).

DISK DIRECTORY

This contains a list of all the files on a diskette. If you select option A and press
Cil:!l1il:ilJ TWICE, you can display the filenames, extenders (if any), the number of
sectors allocated to the file, and the number of free sectors still available.

RUN CARTRIDGE

(Can ONLY be used with a cartridge installed in the computer console.) This allows
you to return control of your system to the cartridge inserted in the cartridge slot
(the left cartridge slot in the ATARI 800 Personal Computer System).

COpy FILE

Use this option when you have two or more disk drives and you want to copy files
from one diskette to another. Also use this option if you want two files with the
same information on the same diskette by assigning a second name to the original
file.

DELETE FILE

This option lets you erase a file from the diskette, increasing your available sector
space.

Getting Started with DOS II 5

6 Cetting Started with DOS II

RENAME FILE:

Use this option when you want to change the name of a file.

LOCK FILE

This option prevents you from changing, renaming, or accidentally erasing the file.
You will still be able to read the file, but will not be able to write to it. When the
directory is displayed, an asterisk is placed in front of the file name to indicate it is
locked.

UNLOCK FILE

This removes the asterisk from in front of the file name and allows you to make
changes to the file, rename it, or delete it.

WRITE NEW DOS

Use this option to replace or add the DOS files (DOS. SYS and DUP. SYS) on your
Master Diskette onto a diskette in any disk drive.

FORMAT DISKETTE

This option is used to format a blank diskette, which is necessary before you can
write anything onto it. Be sure you do not have any files you want to keep on the
diskette before formatting. This option is not normally used on ATARI 810 For-
matted Diskettes (CX8111).

DUPLICATE DISK

This is the option you choose when you want to create an exact duplicate of a
diskette (for more detailed information, refer to Section 2 on Backing Up
Diskettes).

DUPLICATE FILE

This option enables you to copy a file from one diskette to another, even if you
only have a single disk drive. (See the section on Duplicating Files for more detail.)

CREATE MEM.SAV

This option allows you to create available sector space on the diskette for the pro-
gram in RAM to be stored while the DUP. SYS file is being used. (For more informa-
tion, see CREATE MEM.SAV in Section 4.) We advise you to create a MEM.SAV file
on each new diskette you intend to use as a System Diskette. As you become more
familiar with the DOS, you may find there are cases where a MEM.SAV file serves
no useful function. Hence, the inconvenience of waiting for the file to load into
memory may warrant deleting it from the diskette. An example would be when
there is no program in RAM that you want to protect when typing in DOS.

BINARY SAVE*

With this option you can save the contents of specified memory locations on a
diskette. (Manipulates assembly language programs.)

BINARY LOAD*
This option lets you retrieve an object file from a diskette. It is the reverse func-
tion of BINARY SAVE. (Manipulates assembly language programs.)

RUN AT ADDRESS*
With this option you can enter the hexadecimal starting address of an object pro-
gram after it has been loaded into RAM with a BINARY LOAD. (Executes
assembly language programs.)

*Note: BINARY SAVE, BINARY LOAD, and RUN AT ADDRESS are for the ad-
vanced user of DOS II and are explained in greater detail in Section 4.

Getting Started with DOS II 7

THE MASTER
DISKETTE

ATARI810
FORMATTED
DISKETTES II

2

DISKETTES

The Master Diskette contains the disk operating system programs. These programs
include all the system file management and utility routines necessary to make your
disk drive function with your ATARI Personal Computer System. Without a disk
operating system, you cannot access the disk drive.

Each Master Diskette contains the following files:

DOS.SYS File

DOS.SYS is a file containing the File Management Subsystem (FMS) and the RAM-
resident portion of the DUP.SYS (frequently referred to as "mini-DOS"). The RAM-
resident portion of DUP.SYS contains the subfunctions that can be controlled by
the FMS: DELETE FILE, RENAME FILE, LOCK FILE, UNLOCK FILE, and FORMAT
DISK.

DUP.SYS File

This is the Disk Utility Package that contains the DOS Menu and DOS subfunctions
NOT controlled by the FMS. Whenever you want to see the DOS Menu or perform
these DOS subfunctions (BINARY LOAD, BINARY SAVE, RUN AT ADDRESS, RUN
CARTRIDGE, COpy FILE, DUPLICATE FILE, and DUPLICATE DISK), you must load
the DUP.SYS file into RAM by typing DOS and pressing IM",*I.
Note: Normally when you bring the DUP.SYS file into RAM, it writes over data in
the lower program area occupied by BASIC or assembly language programs.
However, when you create a MEM.SAV file (see section on MEM.SAV) on your
diskette, the mini-DOS saves any data in RAM to diskette before loading DUP.SYS.
When you are finished using the DUP.SYS functions, MEM.SAV allows you to
reload your program automatically.

AUTORUN.SYS File

This file is used to poll (check) the peripheral units (if any) attached to your ATARI
Personal Computer System and to run machine code programs (see Section 4 of
this manual for more detail on AUTORUN.SYS).

In addition to the Master Diskette II (CX8104), your ATARI 810 Disk Drive comes
with an ATARI 810 Formatted Diskette II (CX8111). Although this diskette has no
files or program data on it, it has been preformatted at the factory. Preformatting
means the diskette was divided into tracks and sectors before packaging (see
Figure 2-1) so that it has an improved sector layout. This improved sector layout
makes it possible for you to store and retrieve information more rapidly than is pos-
sible with diskettes formatted on your ATARI 810 Disk Drive. This "empty" diskette
is provided so you can make a backup copy of your Master Diskette. This backup

Diskettes 9

ATARI LABEL

. .
WRITE PROTECT
.- NOTCH

TIMING HOLE

THE READING HEAD
MOVES IN AND OUT
FROM THE OUTER EDGE
TO THE CENTER.

HOW TO
FORMAT
A DISKETTE

10 Diskettes

READ-WRITE AREA

TRACK (ONE COMPLETE REVOLUTION)

A SECTOR (ONE PIECE OF A TRACK)

Figure 2-1 A Formatted Diskette

copy, called a System Diskette, is the one you will actually work with, ensuring the
safety of your original Master Diskette (see Making a System Diskette).

If, at any time, you decide to erase the files from a preformatted diskette, use the
DOS Menu selection D. DELETE FILE(S). This will save the improved sector layout
that allows the diskette to run faster. Should you reformat the diskette for any
reason (perhaps to test for possible bad sectors), it will no longer have the improved
sector layout.

Note: You can also use blank diskettes that have not been preformatted at the fac-
tory with the ATARI 810 Disk Drive. You will have to format these diskettes
yourself using the FORMAT DISK menu option before you can write DOS FILE or
store programs on them (see How to Format a Diskette). However, you will not
have the advantage of the improved speed of the preformatted diskettes.

You will need to format any blank diskette before you can write on it (unless you
are using an ATARI 810 Formatted Diskette II (CX8111)). Formatting organizes a
diskette so DOS II will know where information is located. Unlike a phonograph
record that has visible spiraling grooves imprinted onto it, the diskette has
magnetically inscribed grooves that are not visible.

Once you have formatted a diskette, it will contain 40 of these concentric tracks,
which are divided into 18 pie-shaped wedges called sectors. You ascertain the
storage capacity by multiplying the number of tracks (40) by the number of sectors
per track (18), which gives you 720 sectors. However, 13 of the 720 sectors are used

by DOS II and are not available to you for writing files and data. The actual break-
down is as follows:

3 sectors used for booting the system
8 sectors used for the Directory
1 sector used for the Volume Table of Contents
1 Sector 720 is not addressable
13 Total

As a result, you actually have a total of 707 sectors to which you may write data.
The ATARI 810, a single-density disk drive, can store 128 bytes of information on
each sector of the diskette. Because 3 bytes per sector are allocated for the File
Management Subsystem, the total storage capacity per single-density diskette is
88,375 bytes.

To format a diskette, you must use the I. FORMAT DISK option on the DOS Menu.
This is not necessary if you are using ATAR I 810 Formatted Diskettes II (CX8111). If
you are using an ATARI 810 Disk Drive as Drive 1, see instructions (A) below. If you
are using an ATARI 815 Dual Disk Drive as Drives 1 and 2, see instructions (B).

(A) Using the AlARI 810 Disk Drive:

1. Turn the disk drive on. Wait for the BUSY light to go off.

2. Make sure the switch on the back of the disk drive is set to NO.1 (refer to
Figure 1-2 for drive code settings).

3. Insert the ATARI 810 Master Diskette II (CX8104) and close the drive door.

4. Turn the computer console on. DOS will load into the computer memory.

5. When the READY prompt appears (if you have inserted the ATARI BASIC car-
tridge), type DOS and press l;liiiWi. After a few seconds the DOS Menu will ap-
pear on the screen. (If no cartridge is inserted, the DOS Menu will appear on
the screen automatically.)

6. Type I for the FORMAT option and press I;!:,ji@i.

7. When the prompt message WHICH DRIVE TO FORMAT appears, remove the
Master Diskette from the disk drive and insert a BLANK diskette. Close the
door, type 1 and press 'il;iij;llj.

8. When the prompt message TYPE Y TO FORMAT DISK 1 appears, type Y and
press I;\;ii@'. The BUSY light will come on and the system will format the
diskette.

9. When the prompt message SELECT ITEM OR RETURN FOR MENU appears,
the formatting is complete, and you can write files to that diskette.

If you have two or more ATARI 810 Disk Drives, you can format a blank diskette on
any drive. However, you must know the drive code setting of the drive you use, so
you can respond to the prompt WHICH DRIVE TO FORMAT.

(8) Using the AlARI 815 Dual Disk Drive:

1. Turn the disk drive(s) on. Wait for the BUSY light to go off.

Diskettes 11

MAKING A
SYSTEM
DISKETTE
FROM YOUR
MASTER
DISKETTE

12 Diskettes

2. Make sure the switch on the back of the disk drive is set properly (refer to
Figure 1-2 for drive code settings).

3. Insert the AT ARI 815 Master Diskette II (CX8201) into Drive 1 and close the
drive door.

4. Turn the computer console on. DOS will load into the computer memory.

5. When the READY prompt appears (if you have inserted the ATARI BASIC car-
tridge), type DOS and press mwml. After a few seconds, the DOS Menu will
appear on the screen. (If no cartridge is inserted, the DOS Menu will appear on
the screen automatically.)

6. Type I for the FORMAT option and press ';jJiiJmI.
7. When the prompt message WHICH DRIVE TO FORMAT appears, place the

blank diskette into Drive 2, close the door, type 2, and press liliWiIfi.
8. When the prompt message TYPE Y TO FORMAT DISK 2 appears, type Y and

press The BUSY light will come on and the system will format the
diskette in Drive 2.

9. When the prompt message SELECT ITEM OR RETURN FOR MENU appears,
the formatting is complete, and you can write files to that diskette.

The first disk operation you need to perform is duplicating your Master Diskette.
This is done to protect your Master Diskette from any inadvertent damage. The
duplicate of your Master Diskette is referred to as the System Diskette (working
copy), and is the one you will normally use to load DOS into RAM.

You create the System Diskette in one of two ways, depending on which disk drive
you have.

CREATING A SYSTEM DISKETTE WITH THE ATARI 810 DISK DRIVE

1. Turn the television set and disk drive on and wait for the BUSY light (top red
Iight) to go off.

2. Remove the Master Diskette from its protective paper sleeve.

3. Insert the Master Diskette into the disk drive and close the drive door.

4. Turn the computer console on.

5. Assuming you have a BASIC cartridge inserted in the console, you will see a
READY prompt message. Type DOS and press l.lIin!1i1l (If NO cartridge is in-
serted in the console, the DOS Menu will appear on the screen automatically.)

6. Remove the Master Diskette and insert a formatted diskette into the disk
drive. This empty diskette can be one of the following:

• An ATARI 810 Formatted Diskette II (CX8111)

• A diskette you have previously formatted using DOS II

• A diskette you have reformatted using DOS II

7. Type H and press mmtlfor the WRITE DOS FILES option.

8. When the prompt message DRIVE TO WRITE DOS FILES TO? appears, type 1
and press

9. When the prompt message TYPE Y TO WRITE DOS TO DRIVE 1 appears, type
Y and press ImmtiOJ.

10. The message WRITING NEW DOS FILES will appear on the screen.

11. When the prompt message SELECT ITEM OR RETURN FOR MENU appears,
the Master Diskette has been dupl icated and you have created a System
Diskette.

Note: At this point we strongly recommend you create a MEM.SAV file (see
subsection on MEM.SAV later in this section). MEM.SAV allocates a specified
number of sectors on the System Diskette (or any diskette) for storing the resi-
dent RAM program while you are using the DOS functions; i.e., the DUP.SYS
file (see section explaining the DUP.SYS function).

12. Type N and press mm3to create a MEM. SAV file on your System Diskette.

13. When the prompt message TYPE Y TO CREATE MEM. SAV appears, type Y
and press

14. When the prompt message SELECT ITEM OR RETURN TO MENU appears,
your System Diskette will have a MEM. SAV file on it.

If you have two or more ATARI 810 Disk Drives, you can insert the formatted
diskette into any drive before choosing Menu Option H. WRITE DOS FILES.
However, you must remember which drive you are using so you will be able to
answer the prompt, DRIVE TO WRITE DOS FILES TO?, in step 8 above.

CREATING A SYSTEM DISKETTE USING THE ATARI815 DUAL DISK DRIVE

1. Turn on the ATARI 815 Dual Disk Drive. Make sure the drive code on the back
of the drive has been set properly (see Figure 1-2). The upper drive should be
labeled as Drive 1 and the lower drive as Drive 2.

2. Remove the Master Diskette from its protective paper sleeve.

3. Insert the Master Diskette into Drive 1 and close the drive door.

4. Turn the computer console on.

5. Assuming you have inserted a BASIC cartridge, you will see a READY prompt
message on the screen. Type DOS and press (If no cartridge is in-
serted in the console, the DOS Menu will appear automatically on the
screen.)

6. When the prompt message SELECT ITEM OR RETURN FOR MENU appears,
type H and press to select the WRITE DOS FILES option.

7. When the prompt message DRIVE TO WRITE FILES TO appears, place a for-
matted diskette into Drive 2 and close the drive door. Type 2 and press

DISkettes 13

WRITE-
PROTECTING
YOUR DISKETTES

14 Diskettes

8. When the prompt message TYPE Y TO WRITE DOS TO DRIYE 2 appears, type
Y and press 'iJiuhU"

9. The message WRITING NEW DOS FILES appears on the screen.

10. When the DOS Menu and prompt message SELECT ITEM OR RETURN FOR
ME NU appears, you have created a System Diskette.

Note: At this point we strongly recommend you create a MEM. SAY file (see
subsection on MEM. SAY later in this section). MEM. SAY allocates a
specified number of sectors for storing the RAM resident program, giving you
more room to use the DUP. SYS files (see section on DUP. SYS).

11. Remove your newly created System Diskette from Drive 2 and insert it into
Drive 1. Place your Master Diskette into its protective sleeve and store care-
fully (see section on storing diskettes).

12. Type N and press i;\ijii@lto create a MEM. SAY file on your System Diskette.

13. When the prompt message TYPE Y TO CREATE MEM. SAY appears, type Y
and press 'i"iij;l:I.

14. When the prompt message SELECT ITEM OR RETURN FOR MENU appears,
your System Diskette will have a MEM. SAY file on it.

Because DOS II occupies 10K bytes of the available space for data storage, it is not
practical to put DOS lion every diskette. Load the diskettes in the following order:

1. Boot with a System Diskette

2. Replace the System Diskette with the program diskette you wish to use.

REMEMBER, if you turn your system off for any reason, you will need to remove
any program diskette that does not have DOS lion it and insert the System
Diskette before you will be able to reboot the computer.

Write-protecting is simply a method of preventing you from inadvertently writing
over valuable information you may not want to lose from a diskette.

You will notice that the DOS II Master Diskette has no notch on the left side of the
diskette jacket so it is impossible to write files on it; therefore, it is already write-
protected. Blank and preformatted diskettes do have the notches on the left side of
the diskette jacket enabling you to write to the diskette.

Normally, you would not write-protect a System Diskette, as this will defeat the
purpose of the MEM. SAY file, preventing you from writing the RAM-resident pro-
gram to the diskette when necessary. For this reason, you may wish to put the files
you want to save on another diskette, which you can write-protect.

HOW TO WRITE-PROTECT VALUABLE DISKETTES

A sheet of large file identification labels and a second sheet of small adhesive
write-protect tabs are included in each box of AT ARI diskettes.

LABELING
DISKETTES

WRITE-PROTECT
------ NOTCH

Figure 2-2 Write-Protecting a Diskette

Write-protecting is accomplished by simply removing an adhesive write-protect tab
from the sheet and folding it over the notch on the edge of the diskette (see Figure
2-2)

If you are using the AT ARI 815 Dual Disk Drive, you may also protect your disk-
ettes by using the write-protect (WRIT PROT) switch on the drive unit This switch,
when on (glows red), prevents you from adding, changing, renaming, or deleting
files. When you no longer need the write-protect condition, however, REMEMBER
to turn the write-protect switch off

Should you try writing to a write-protected diskette, you will see an ERROR-144
message displayed on the screen.

Use the self-adhesive labels to identify the data on each diskette Write on the
label first to avoid damaging the diskette, and then attach these labels in the upper
right corner of the diskette envelope

The principle difference between the ATARI 810 Disk Drive and the ATARI 815
Dual Disk Drive is the way the data is encoded for storage on diskettes.

SINGLE-DENSITY
AND DOUBLE-
DENSITY
DISKETTE
RECORDING

ATARI810

Information is transferred to the
disk drive in blocks of 128 bytes
(single density), and each block of
128 bytes fills one sector on the
diskette

DOS II is available in two versions

ATARI815

Information is transferred to the
disk drive in blocks of 256 bytes
(double density), and each block
of 256 bytes fills one sector on the
diskette.

• 2 OS for recording data on the single-density ATARI 810 Disk Drive

• 2 OD for recording on the double-density AT ARI 815 Dual Disk Drive

WHICH
DISKETTES
TO USE?

To perform disk operations successfully, you must have the correct version of DOS
II for your disk drive(s) and the correct blank diskettes for data storage. The chart in
Figure 2-3 shows which diskettes you should use depending on the disk drive(s) you
have:

ATARI 810 Disk Drive(s)
or

ATARI'815 Dual Disk Drive
or

Combination of ATARI 810 and 815 Disk Drives

CX8104 CX8111 CX8100 CX8202 CX8201

DISK DRIVE
AlARI810 AlARI810 AlARI810 AlAR1810/815 AlARI815
MASTER FORMATTED BLANK BLANK MASlER
DISKETTE DISKETTE DISKETTE DISKETTE DISKETTE.

AlARI810 X X X X

AlARI815 X X

Figure 2-3 Correct Diskettes for Your Disk Drive

Figure 2-3 shows that you can only use the AT ARI 810 Master Diskette II (CX8104)
(single-density version of DOS II) with your ATARI 810 Disk Drive. You can choose
from ATAR I 810 Blank Diskettes (CX8100), AT AR I 810/815 Blank Diskettes (CX8202)
or ATARI 810 Formatted Diskettes II (CX8111) for program and data storage.

If you have one or more ATARI 815 Dual Disk Drives, use the AT ARI 815 Master
Diskette (CX8201) (double-density version of DOS II), and the AT ARI 810/815 Blank
Diskettes (CX8202) that were packed with your disk drive. Since the CX8202 disk-
ettes are totally blank, you will have to format each before using it to duplicate
your Master Diskette (see section on formatting).

If you have both ATARI 810 and ATARI 815 Disk Drives attached to your ATARI
Personal Computer System, use ATARI 815 Master Diskette (CX8201), and insert it
in Drive 1 of the AT ARI 815 Dual Disk Drive. MAKE SURE EACH DRIVE has a dif-
ferent drive number setting. Set the ATARI 810 Disk Drive as Drive 3.

HOW TO STORE
DISKETTES

16 Diskettes

Since your diskettes are flexible, they are subject to damage. The following sugges-
tions will help keep your diskettes in good condition:

• ALWAYS keep the diskettes in their protective paper sleeves when not in use.

• Store them vertically as you would properly store records; do not stack them one
on top of another.

• Store the diskettes AT LEAST 12 inches from your television set or any other pos-
sible source of magnetic fields.

• Store the diskettes away from any direct source of heat.

Your diskettes are an important and valuable part of your ATARI computer system
and, with proper care, will give you many hours 0'': dependable use and enjoyment.

Diskettes 17

IDENTIFYING
YOUR
DISKETTE FILES

FILENAME
EXTENDERS
AND THEIR USE

3

USING DOS II

This section and those that follow teach you how to create and work with your
files.

Files are classified into two types:

PROG RAM FILES. These are sets of instructions that tell the computer to perform
specific tasks.

DATA FILES. These usually contain the information used by a program file, but not
the instructions. For instance, a permanent data file may be a name and address
file capable of being updated at any time.

Just as you call a person by name, so must you call a file by a name when you want
to access it. The filename on the diskette is part of the file specification (or filespec
for short). Filespecs (see Figure 3-1) have six key elements. If you call a file by its
wrong name, just I ike a person, it won't answer; instead, you will see an ERROR-170
appear on the television screen.

The rules for filenames are:

• The maximum length of a filename is eight characters.

• The only characters that can be used in a filename are the letters A through Z,
and the numbers 0 through 9.

• The first character in a filename is ALWAYS an alphabetic character.

• The characters * and? CANNOT be used as part of a name when establishing a
filename. (See the section on Wild Cards for explanation.)

• The filenames DOS.SYS, DUP.SYS, AUTORUN.SYS, and MEM.SAV are reserved
for DOS II.

You can add a three-character extender to a filename to indicate the type of data in
a file. You can use any legal combination of letters and numbers, for example:

SYS system files
BAS BASIC program files
OAT data fi les
MUS AT ARI Music Composer! files
ASM assembly language files
OBJ binary load files
SRC source files
LST files created by the LIST command
SVE files created by the SAVE command

USing DOS II 19

/ID 1 A TAR I 8 0 0 . B A S/I
I I I

Device
Code

Device
Number
(optional)

Required
Colon

Filename
(up to 8
characters-
must begin
with alphabetic
character)

Period required
as separator if
extender is used.

Extender ---------------------'
(optional)
Includes
0- 3 characters

Figure 3-1 Structure of a Filespec

If you try to use an extender that has more than three characters, DOS I' wi II ignore
the additional character(s). The example in Figure 3-2 illustrates both legal and il-
legal filenames, with an explanation of what makes a name illegal.

20 Using DOS II

CASHFLOW
ATARI.BAS
3ATARIDAT

ATARI22.ASM
ATARI#
A1234567.BA2
B ATARI.LST

DOS.SYS

DOSSYS
TEST1.123
ATARI.BASIC

Figure 3-2

Legal name.
Legal name.
Illegal name. First character is not an
alphabetic letter.
Legal name.
Illegal name.
Legal name.
Illegal name. No spaces allowed.

Illegal name. Reserved for DOS.
Legal name.
Legal name.
Legal name. Note that DOS ignores the last two
letters of the extender.

Examples of Legal and '"egal Filenames

WILD CARDS AT ARI DOS recognizes two "wild cards" that you can substitute for characters in a
filename. Wild cards are represented by the special characters, question mark (?)
and asterisk (*).

Use the question mark (?) to substitute for a single character. The asterisk (*) can
stand for any val id combination of characters or number of characters, and
therefore, is a great deal more flexible. The following examples illustrate the use of
the asterisk and question mark.

Examples:

*.BAS

D2:* .*

PRO*.BAS

TEST??

will I ist all the program files on a diskette in Drive 1 that
end in .BAS.

will list all the program files on the Drive 2 diskette.

will list all the program files on diskette in Drive 1 that
begin with PRO and have. BAS as the extender.

will list all the program files on diskette in Drive 1 that
begin with TEST and have any combination of letters or
numbers for the last two characters.

Figure 3-3 summarizes the DOS Menu options and shows whether they allow you to
use wild cards in their parameters.

DOS MENU OPTION WILD CARDS

A. Disk Directory Yes
B. Run Cartridge No
C. Copy File Yes
D. Delete File Yes
E. Rename File Yes
F. Lock File Yes

G. Unlock File Yes
H. Write DOS File No
I. Format Disk No

J. Duplicate Disk No
K. Binary Save No

L. Binary Load No
M. Run at Address No
N. Create MEM. SAV No
O. Duplicate File Yes

Figure 3-3 DOS Menu Options That Can and Cannot Use Wild Cards

Using DOS II 21

22 Using DOS II

BOOT ERRORS

When you start your system, boot errors can occur for the following reasons (see
Figure 3-4):

1. The inserted diskette does not have DOS on it.

2. The diskette was inserted wrong.

3. The diskette has been scratched, warped, or marred. In this case, use another
diskette.

4. The diskette is a double-density diskette in an AT ARI 810 Disk Drive, or is a
single-density diskette in an ATARI 815 Dual Disk Drive.

Figure 3-4 Boot Errors

The following conditions will also cause a boot error, but no indication of it will ap-
pear on the screen.

1. The disk drive was turned on AFTE R the computer console was turned on.

2. The disk drive is not properly connected to the computer console.

3. The power adapter plug has loosened from its wall socket.

4. The power adapter plug has loosened from the disk drive PWR socket.

5. The drive code setting is not correct.

If you have checked, and find none of these problems, take the following steps:

1. Insert the Master Diskette or a System Diskette into Drive 1 and reboot the
system.

SAVING,
LOADING,
AND RUNNING
PROGRAMS

2. Remove the Master Diskette and store in a safe place.

3. Reinsert the problem diskette and save any accessible files on another diskette
using the process for copying files (see the C. COpy FILE Menu option in Sec-
tion 4).

4. Then with the problem diskette in Drive 1, use the DELETE FILE(S) function to
erase all the files.

5. Try using the diskette again. If this fails, the diskette will have to be reformat-
ted.

Note: For the CX8111 ATARI 810 Formatted Diskette II, this should be done
ONLY AS A LAST RESORT to avoid losing the improved formatting.

6. If reformatting fails, the diskette has bad sectors on it and should be discarded.

After you have created your System Diskette and, if necessary, formatted a blank
diskette, you are ready to write your own programs. When the power is turned OFF
on your computer, you lose any program stored in memory. With an AT ARI Disk
Drive, you have the means to store and retrieve programs without having to retype
them. You can use the following simple BASIC commands to store and retrieve
your programs. We have included a sample program for you to type into your com-
puter and a step-by-step procedure for saving it on a diskette and loading it back in-
to the computer. Use the first set of instructions if you have an ATARI 810 Disk
Drive and the second set of instructions if you have an AT ARI 815 Dual Disk Drive.

If You Have an AlARI 810 Disk Drive:

1. Turn on the disk drive.

2. Insert the System Diskette in Drive 1.

3. Turn on the computer console and television set.

4. When the BUSY light goes off, remove the System Diskette, and insert a
diskette that has been formatted.

5. Type the program shown in Figure 3-5.

7. When the BUSY light goes off and the READY prompt message appears on the
screen, the program you typed in is successfully saved on the diskette.

8. Type NEW , •."..'I .. to erase the program from RAM.

Now to reload the program into memory:

9. Type LOAD "D:INTERESl.SAV" ..

10. When the READY prompt appears on the screen, you can now run the pro-
gram by typing RUN 1!/!/cd,.Ii/i;i¥I,i"cliil.

USing DOS II 23

24 USing DOS II

11. You can also load and run your program by typing RUN "D:INTEREST.SAV"

Note: Do not delete the Sample Interest program from your diskette; you will
use it again in Section 5.

100 REM *** INTEREST
110 PRINT "IF YOU TYPE THE AMOUNT OF P
RINCIPLE"
120 PRINT "AND THE INTEREST RATE PER Y
EAR, I WILL"
130 PRINT "SHOW YOU HOW YOUR MONEY GRO
WS, YEAR BY"
140 PRINT "YEAR, TO STOP ME, PRESS THE
BREAK KEY."
150 PRINT
160 PRINT "PRINCIPAL"i
165 INPUT P
170 PRINT "INTEREST RATE"i
175 INPUT R
180 LET N =1
190 PRINT
200 LET A = P*(1 + R/100)J\N
210 PRINT "YEAR = "iN
220 PRINT "AMOUNT = "iA
230 LET N = N +1
240 GOTO 190

READY

Figure 3-5 Sample Interest Program

If You Have an ATARI 815 Dual Disk Drive:

1. Turn on the disk drive.

2. Insert the System Diskette in Drive 1 and a formatted diskette in Drive 2.

3. Turn on the computer and television set.

4. Type the program shown in Figure 3-5.

5. Type SAVE "D2:INTEREST.SAV"

6. When the BUSY light goes off and the READY prompt message appears on the
screen, the program you typed is successfully saved on the diskette in Drive 2.

7. Type NEW to erase the program from RAM.

Now you are ready to load the program you have saved.

8. Type LOAD "D2:INTEREST.SAV" lummi.
9. The program is ready to be run. Type RUN ';ljiiJmI.

10. You can also load and run your program by typing RUN "D:INTEREST.SAV"
laalttml·

Note: Do not delete this program from your diskette; you will use it again in
Section 5.

Using DOS II 25

A. DISK
DIRECTORY

4
SELECTING A DOS MENU OPTION

To select a DOS Menu option:

1. Type DOS and press

2. The Menu will appear on the screen listing the 15 options available. Refer to
Figure 1-4 "The DOS II Menu."

3. Type in your selection and press

4. A prompt message will appear listing the parameters you need to supply
before the DOS can perform the function you have chosen. The parameter is
additional information (sometimes optional) specifying how the command is to
operate.

5. The prompt message SELECT ITEM OR RETURN FOR MENU appears each
time the computer system completes a request. If you choose to select another
item, type the letter for the option you need and press The bottom half
of the screen will scroll upward to allow the next option's prompt message(s). If
you press the screen will clear and redisplay the DOS Menu.

The Disk Directory contains a list of all the files on a diskette. On command, it
displays the filenames, the extender (if any), and the number of sectors allocated to
that file. It will either display a partial list or a complete list depending on the
parameters entered. Wild cards can be used in the parameters.

Type A and press the SELECT ITEM OR RETURN FOR MENU
prompt. The screen ir displays the entry module message:

DIRECTORY -SEARCH SPEC, LIST FILE

If you press again after this message, you will see a listing of all the
filenames on the size (in sectors) of each file, and the number of free
sectors remaining on the diskette. The following example shows the files in the
directory of your system diskette for DOS II:

SElECT ITEM OR RETURN FOR MENU
A
DIRECTORY - SEARCH SPEC, LIST FilE?

Lists all filenames on screen
from the diskette in Drive 1

DOS SYS 039 (ATARI 810 Disk Drive)
DOS SYS 019 (AT ARI 815 Dual Disk Drive)

Selecting a lJOS Menu Option 27

PARAMETERS
FOR THE DISK
DIRECTORY
OPTION

28 Selecting a DOS Menu Option

DUP SYS 042 (ATARI 810 Disk Drive)
DUP SYS 021 (ATARI 815 Dual Disk Drive)

MEM SAY 045 (ATARI 810 Disk Drive)
MEM SAY 022 (ATARI 815 Dual Disk Drive)

581 FREE SECTORS (ATARI 810 Disk Drive)
626 FREE SECTORS (ATARI 815 Dual Disk Drive)

SELECT ITEM OR RETURN FOR MENU

As you can see from the entry module message for the Disk Directory, this com-
mand has two parameters:

SEARCH SPEC and LIST FILE

If you do not indicate a specific filespec in this parameter, the DOS will substitute
the defau It values of 01: *. * ,E: for these two parameters. The first defau It
parameter, 01:*.*, tells DOS you want to see a listing of all the filenames and file
sizes on the diskette currently inserted in Drive 1.

At this time, you can choose to search for a single file, several files, or all files on
the diskette you designate. If you do not indicate a specific disk drive, DOS II will
assume you want to see the files on the diskette in Drive 1 (the default drive).

The second default parameter, E:, tells DOS you want all this information to be
displayed on the screen. Therefore, if you specify neither parameter and simply
press the DOS will list on the screen all filenames and file sizes stored on
the inserted in Drive 1.

If you have an AT ARI Printer you can print a permanent copy of the directory by
using a P: for the second parameter. In the example below, the data is printed for
only one file, DOS.SYS.

1. Type A and press mmtl
2. After the directory prompt message, type DOS.SYS, P: and press m'JfJ'fJi.tI
3. If you have a printer and it is on, a partial directory for Drive 1 will be printed

on the printer instead of the screen.

On the screen or hardcopy from the printer you will see:

DOS.SYS 039 (for single density)
DOS.SYS 019 (for double density)

If you do not have a printer (or it is not turned on), you will see an ERROR-138
displayed on the screen. Each time the DOS II DISK DIRECTORY option completes
a task, it displays a SELECT ITEM OR RETURN FOR MENU prompt message Figure
4-1 illustrates several different ways you can use this option.

Note: When filenames are displayed, names and their extenders are separated by a
space. However, when you want to access a file, you MUST use a period between
the filename and its extender.

Example 1:

SElECT ITEM OR RETURN FOR MENU
A
DIRECTORY-SEARCH SPEC, LIST FILE?
*.SYSmm

SElECT ITEM OR RETURN FOR MENU

Example 2:

SELECT ITEM OR RETURN FOR MENU
A Iilmtt!
DIRECTORY- SEARCH SPEC, LIST FILE?
D2:,P:U.

SELECT ITEM OR RETURN FOR MENU

Example 3:

SELECT ITEM OR RETURN FOR MENU
A iifmtiZl
DIRECTORY- SEARCH SPEC, LIST FILE?
EO?* mim

SELECT ITEM OR RETURN FOR MENU

Lists all files from Drive 1
diskette with .SYS extender
on the screen.

Lists all files on Drive 2
diskette on the line printer.

Lists all 3-letter filespecs
from the Drive 1 diskette
that begin with EO.

B. RUN
CARTRIDGE

Figure 4-1 Using the Disk Directory Option

Whenever you select B, DOS II gives control of your AT ARI Personal Computer
System to the inserted cartridge. If the BASIC cartridge is inserted, the screen
displays a READY prompt. If the Assembler Editor cartridge is inserted, the screen
displays an EDIT prompt. If you have not inserted a cartridge, the message NO
CARTRIDGE appears on the screen.

Example:

SELECT ITEM OR RETURN FOR MENU
BI'DtiZI

If the MEM.SAV file exists on the Drive 1 diskette, your BASIC or assembly lan-
guage program will automatically be saved to the diskette when you type DOS

and then reloaded into RAM when you return control to the cartridge (B.
RUN CARTR IDGE). This is assum ing the diskette in Drive 1 is the same diskette that
was there before you called DOS and that you did not invalidate MEM.SAV by
your use of COPY FILE, DUPLICATE FILE, or DUPLICATE DISK. A prompt will ap-
pear to remind you that MEM.SAV can be invalidated if you try to use any of these
commands (see section on MEM.SAV).

Selecting a DOS Menu Option 29

c. COpy FILE

30 Selecting a DOS Menu Option

If you did not have a MEM.SAV file on your System Diskette (in Drive 1) when you
entered DOS, you will find that any BASIC or assembly language program in
memory before you entered DOS is now gone. Your program cannot be recovered
now, unless you previously saved it on a diskette before you called DOS. This loss
of your program file happens when using DOS II because you share the user pro-
gram area with the disk utility package stored in the DUP.SYS file. The sharing of
RAM with DUP.SYS increases the amount of RAM available to the user compared
to DOS I.

Use this option if you have two or more disk drives and want to copy a file from a
diskette in one disk drive to another diskette in a second disk drive. There are two
parameters associated with the COpy FILE command: FROM and TO. The first
parameter, FROM, is usually a filespec, which mayor may not' contain wild cards.
The use of wild cards in the first parameter gives you a very convenient way of
copying a group of files from one disk drive to another (see Example 6). The fA op-
tion can be used with the second parameter to allow two complementary files to
be appended. The second parameter is generally a filespec, but can also be a
destination device such as E: (screen), P: (printer), or D: (disk drive) (see Examples
3, 5, and 6 in Figure 4-2).

COpy FILE can also be used to create a backup copy of a particular file on the
same diskette with the same filename, but a different extender, or even a com-
pletely different filename. If the file you are copying to a new name is made up of
several files that have been appended (a "compound" file), the new version of the
file will be compressed; i.e., it will take up fewer sectors than the original file from
which it was copied.

Note: Attempting to copy any DOS.SYS file will generate an error message. The on-
ly way you can write a DOS.SYS file is to use the H. WRITE DOS.SYS file option.

If you attempt to copy a file, as described above, when a MEM.SAV file is on your
System Diskette, you will get a new prompt message. You will get the new message
after typing in the source drive number (where the information is coming from) and
the destination drive number (where the data is going). This message, TYPE Y IF OK
TO USE PROGRAM AREA CAUTION: A Y INVALIDATES MEM.SAV, appears to
remind you that DOS II can use all of the user program area to speed up the copy
file process. A "Y" notifies DOS II that you really don't care about your user pro-
gram area or MEM.SAV file at this time and MEM.SAV will be invalidated. An N
response tells the DOS that it cannot put anything into the user program area. It
can only use a much smaller, internal buffer to move your file. In other words,
your file will still be copied when you give an N response, but it will take longer

You can also use this selection to copy the file listing to the screen (E:), or the
printer (P:)

Caution 1: Do not append tokenized BASIC files, i.e., files stored with a SAVE com-
mand. Each tokenized file has its own symbol table, etc., and only the first file will
be written. However, you can merge two BASIC files stored with a LIST command,
or two binary files created by the Assembler Editor cartridge or DOS II. (Tokenized
and untokenized files are explained in Section 5.)

Caution 2: Remember that in merge operations, files stored with a LIST command
having matching line numbers could cause the files to interfere with each other.

Example 1:

SELECT ITEM OR RETURN FOR MENU
C 'l7!Jl!J.a
COpy - FROM, TO?
D1:DOSEX. BAS, D2:DOSEX.BAS .m
SELECT ITEM OR RETURN FOR MENU

Example 2:

SELECT ITEM OR RETURN FOR MENU

COpy - FROM, TO?
D1:DOSEX.BAS,D1 :DOSEX.BAK

SELECT ITEM OR RETURN FOR MENU

Example 3:

SELECT ITEM OR RETURN FOR MENU

COpy - FROM, TO?
D1:DOSEX.LST,E:Em

SELECT ITEM OR RETURN FOR MENU

Example 4:

SELECT ITEM OR RETURN FOR MENU
Cmmii13
COpy - FROM, TO?
E:,D1:TEMPDAT••

PETEili:BILL
RAY
STEVE

3
SELECT ITEM OR RETURN FOR MENU

Example 5:

SELECT ITEM OR RETURN FOR MENUcmma
COpy - FROM, TO?
D1:DISEX.LST,P:

SELECT ITEM OR RETURN FOR MENU

Copies DOSEX.BAS from D1 to
D2.

Creates backup copy of file on
same diskette.

Displays the program listing on
screen.

Copies any succeeding data
into a file named TEMP.DAT.
Type data on screen that you
want to be stored in TEMPDAT
file

Terminates entry of data.

Lists the program listing
DISEX.LST on the printer.

Selecting a DOS Menu Option 31

Example 6:

SELECT ITEM OR RETURN FOR MENU
c 1;li"hU'
COpy - FROM, TO?
.,D2: lijil!im.

SELECT ITEM OR RETURN FOR MENU

Example 7:

SELECT ITEM OR RETURN FOR MENU
C Iiiiii!;!:'
COPY - FROM, TO?
D1 :PROG2,PROG1/A lil\jii@'

SELECT ITEM OR RETURN FOR MENU

Copies all files from D1 to D2
except those having .SYS
extender.

Appends PROG2 file on D1 to
the PROG1 file.

D. DELETE FILE

E. RENAME FILE.

32 Selectrng a DOS Menu Option

Figure 4-2 Using the Copy File Option

This option allows you to delete one or more files from a diskette and the disk
directory. Wild cards can be used in the filespec names.

Note: DOS II will not allow you to delete any files on a diskette formatted by DOS
I. You must use DOS I to delete files from any DOS I formatted diskette.

The verification prompt message gives you a chance to change your mind about
deleting a file. By appending the IN option (No Verification request) to the filespec
entry, DOS II will eliminate this verification step (see Example 3 in Figure 4-3).

You can also delete all files on a diskette, but leave the diskette formatted. Exam-
ple 4 illustrates the steps for deleting all the existing files on the diskette in Drive 1.
Note that the IN option is used in this example so the verification request does not
need to be answered for each file on the diskette. If you try to delete a locked file,
the screen will display ERROR-167 (File Locked).

If you have purchased ATARI 810 Formatted Diskettes II, this is an excellent way to
clear the diskette of all files without destroying the improved formatting available
on these diskettes.

This option allows you to change the name of one or more files. There are two
parameters, OLD NAME and NEW, for this option. The parameter OLD NAME is
always a complete filespec. If you do not specify a device number, the computer
assumes D1: (the default). The NEW parameter refers simply to the new filename.
The device number is automatically the device specified in the OLD NAME
parameter. If there are any illegal characters in the parameter NEW, the name of
the renamed file will consist of the characters up to, but not including, the illegal
character. You can use wild cards in both the first and second parameters (see Ex-
ample 2 in Figure 4-4).

Warning: Do NOT rename any file on a DOS II diskette using DOS I. In general,
you should never use DOS I with DOS II diskettes.

If you attempt to rename a file on a write-protected diskette, an ERROR-144
(Device Done Error) will display on the screen. If you try to rename a file that is not
on the diskette, an ERROR-170 (File Not Found) error displays. If the screen
displays ERROR-167, it means that you tried to rename a locked file (see F. LOCK
FILE).

Example 1:

SELECT ITEM OR RETURN FOR MENU
D
DELETE FILESPEC
D2:REM* .BAS Em
TYPE "y" TO DELETE...
REM1.BAS?
Y l;!iJjlIRll
REMBAA. BAS
Y Inium
SELECT ITEM OR RETURN FOR MENU

Example 2:

SELECT ITEM OR RETURN FOR MENU

DELETE FILESPEC
D: TEMPDAT
TYPE "y" TO DELETE...
TEMP.DAT
NllDlD
SELECT ITEM OR RETURN FOR MENU

Example 3:

SELECT ITEM OR RETURN FOR MENU
D .ll1miIm
DELETE FILESPEC
DOXEX. BASIN Em
SELECT ITEM OR RETURN FOR MENU

Example 4:

SELECT ITEM OR RETURN FOR MENU
D mmliIm
DELETE FI LESPEC
./N mmJD
SELECT ITEM OR RETURN FOR MENU

All files that begin with REM
and that have a .BAS extender.
Verification prompt.
Deletes REM1.BAS.

Deletes REMBAA.BAS.

A single file.
Verification prompt.

If Y is typed, file will be
deleted.

File will be deleted without
requesting verification.

Deletes all files from the
Drive 1 diskette.

Figure 4-3 Using the Delete File Option

Selecting a DOS Menu Option 33

Example 1:

SELECT ITEM OR RETURN FOR MENU
E
RENAME, GIVE OLD NAME, NEW
D2: TEMPDAT,NAMESDAT

SELECT ITEM OR RETURN FOR MENU

Example 2:

SELECT ITEM OR RETURN FOR MENU
E
RENAME, GIVE OLD NAME, NEW
* .8KB,-, BAS r:J:!il!.t:J
SELECT ITEM OR RETURN FOR MENU

Changes the file on Drive 2
from TEMP.DAT to
NAMES.DAT.

All files with extender 8KB have
their extenders changed to .BAS

Figure 4-4 Using the Rename File Option

Example 1:

SELECT ITEM OR RETURN FOR MENU
F
WHAT FILE TO LOCK?
DOS.SYS
SELECT ITEM OR RETURN FOR MENU

Example 2:

SELECT ITEM OR RETURN FOR MENU
F

FILE TO LOCK?
D1:* .BAS rJ!:IJ:J1!:J

SELECT ITEM OR RETURN FOR MENU

Example 3:

SELECT ITEM OR RETURN FOR MENU
Fmll11

FILE TO LOCK?

SELECT ITEM OR RETURN FOR MENU

Example 4:

SELECT ITEM OR RETURN FOR MENU

TO LOCK?

SELECT ITEM OR RETURN FOR MENU

Locks the DOS.SYS File.

Locks all files on D1 with an
extender of .BAS.

Locks all files on D1 that
begin with T

Locks all D1 files

34 Selecting a DOS Menu Option

Figure 4-5 Using the Lock File Option

F. LOCK FILE

C. UNLOCK
FILE

Use this selection to write-protect a single file. A locked file cannot be written to,
appended, renamed, or deleted. An ERROR-167 will result from trying to write to a
locked file. You can use wild cards to lock several files at the same time.

A locked file will appear on the Disk Directory with an asterisk (*) preceding its
name. DO NOT confuse this asterisk with a wild card.

Warning: If you lock any files on the Disk Directory and then format the diskette,
the locked files WILL STILL BE OBLITERATED. In other words, formatting ignores
the LOCK FILE command.

Use this option to unlock a file or files you previously locked using option F. When
you complete this option, the asterisk that appeared before the filename in the
Disk Directory to indicate the file was locked, will no longer appear on the screen
the next time you execute a DISK DIRECTORY command (DOS Menu option A.).
Wild cards can be used in the filespec names.

Example 1:

SElECT ITEM OR RETURN FOR MENU

TO UNLOCK?
DOSEX.BAS

SElECT ITEM OR RETURN FOR MENU

Example 2:

SElECT ITEM OR RETURN FOR MENU
C rm:;.rJ
WHAT FILE TO UNLOCK?
T* .*

SElECT ITEM OR RETURN FOR MENU

Example 3:

SElECT ITEM OR RETURN FOR MENU
C
WHAT FILE TO UNLOCK?
PRO B?D AT

SElECT ITEM OR RETURN FOR MENU

Unlocks DOSEX.BAS file on
D1.

Unlocks files beginning with
the letter T on Drive 1.

Unlocks ails-letter files
beginning with PROB and
having a DAT extender.

H. WRITE DOS
FILE

Figure 4-6 Using the Unlock File Option

To write DOS II (composed of DOS.SYS and DUP.SYS files) onto a diskette, you
must have previously formatted the diskette using DOS II (see I. FORMAT DISK) or
else be using an AT ARI 810 Formatted Diskette II (CX8111). (The diskette on which
DOS II is to be written can be inserted in the disk drive of your choice.)

Note: DOS II will not allow you to write the new DOS II files onto a diskette for-
matted by DOS I. Similarly, DOS I should only be used to WRITE DOS FILE onto a
DOS I formatted diskette. Even though we advise against it, you should be aware

Selecting a DOS Menu Option 35

I. FORMAT
DISKETTE

36 Selecting a DOS Menu Option

that DOS I does allow you to write a copy of DOS I onto a DOS II formatted
diskette.

Warning: You should never WRITE DOS FILE onto a DOS II diskette. When work-
ing with some diskettes formatted by both DOS I and some formatted with DOS II,
use DOS II to protect yourself from making errors that might damage your valu-
able diskettes.

As soon as the DOS files have been written to the diskette (see Figure 4-7), the
screen is cleared and both the menu and prompt message, SELECT ITEM OR
RETURN FOR MENU, are redisplayed.

If you try to write a new DOS file onto a diskette that has been write-protected, you
will get an ERROR-144. You will also get an error if you try writing a new DOS file
onto a diskette inserted in an 815 Disk Drive that has the WRIT PROT light on.

SElECT ITEM OR RETURN FOR MENU
H fI1!iJI!!"JtfI#
DRIVE TO WRITE DOS FILES TO?
1
TYPE /lY" TO WRITE DOS TO DRIVE 1.
Y
WRITING NEW DOS FILES

SElECT ITEM OR RETURN FOR MENU

Figure 4-7 Using the Write DOS File Option

This option is used to format a diskette. The diskette can be blank or have files on it
that you no longer want. Formatting writes a digital pattern on the diskette that
allows data to be stored and retrieved. Formatting a diskette takes approximately 2
minutes on the ATARI 810 Disk Drive and 2 1/2 minutes on the ATARI 815 Dual
Disk Drive.

The example in Figure 4-8 illustrates Drive 1 as the drive to be formatted; however,
you can specify any drive. It is not possible to format a diskette containing bad sec-
tors. The screen will display an ERROR-173 (Bad Sectors at Format Time), and DOS
II will refuse to format the diskette. If DOS II gets a message from the disk drive
that the diskette has bad sectors, it will try to format the diskette two additional
times. If this happens, it may take up to 15 minutes trying to format a diskette
before returning an ERROR-173.

If a diskette is new and has bad sectors, it is recommended you return it to the sup-
plier for exchange. You should be aware that diskettes supplied by vendors other
than AT ARI may not be of high enough quality to work with the AT ARI Disk Drives.

SElECT ITEM OR RETURN FOR MENU
1f1/ii1!J.'fJ'lJ
WHICH DRIVE TO FORMAT?
1fl!!il!l'fJ'lJ
TYPE /lY" TO FORMAT DISK 1

OR RETURN FOR MENU

Figure 4-8 Using the Format Disk Option

J. DUPLICATE
DISK

DUPLICATION
USINC A
SINCLE DISK
DRIVE

Warning: Formatting a diskette always destroys all files and format existing on the
diskette. If you format an ATARI 810 Formatted Diskette II (CX8111), you will lose
the speed advantage of using a preformatted diskette. Use Menu Option D.
DELETE FILE(S) instead.

Use this menu option to create an exact duplicate of any diskette. You can use this
option with a single disk drive by manually swapping source (diskette with files on
it) and destination (diskette on which you are putting files) until the duplication
process is complete. You can also use this option with multiple disk drive systems
by inserting source and destination diskettes in two separate drives and allowing
the duplication process to proceed automatically.

The duplication process is a sector-by-sector copying technique. This means that
not only are all your files copied from the source to the destination diskette, but
they are also located in the same sector number on both diskettes. The directory of
the source diskette is also copied onto the destination diskette. For this reason, any
files previously stored on the destination diskette will have been destroyed when
the duplication process is complete.

The source diskette must be a DOS II formatted diskette for you to use this option.
If you attempt to use a DOS I diskette, you will get an error message. The destina-
tion diskette can be any formatted ATARI diskette. This means you can use any
ATARI 810 Formatted Diskette II (CX8111) or any diskette formatted on your disk
drive using DOS I or DOS II. If you use an old diskette for the destination diskette,
however, be sure none of the files on it are valuable, because the duplication pro-
cess will write over them with the new files.

Remember, you cannot duplicate a DOS I formatted diskette, nor can you
duplicate diskettes between an ATARI 810 Disk Drive and an ATARI 815 Disk
Drive. If you try to do so, you will get an error message.

You can still approximate the duplication process from an AT ARI 815 Dual Disk
Drive to an AT AR I 810 Disk Drive (and vice versa) and from DOS I to DOS II d isk-
ettes by using the COpy FILE command with the *.* option discussed earlier. The
data will look the same on each diskette, but there are differences in the way data
is stored.

Since there is no true duplication process between DOS I and DOS II diskettes, or
between ATARI 810 Disk Drives and ATARI 815 Dual Disk Drives, you should
always save BASIC or assembly language programs that are currently in RAM
before attempting to duplicate a diskette. There is no internal buffer for
DUPLICATE DISK as there is for the COpy FILE command, and MEM.SAV will be
invalidated if you give DOS II permission to proceed (and to use the program area).
The DUPLICATE DISK option always uses the program area (where a RAM-resident
BASIC program is stored) as a buffer for moving the files on the source diskette to
the destination diskette when one drive is used.

In a single disk drive system, the source and destination drives are both Drive 1 (see
Figure 4-9)

Always write-protect your source diskette as a safety measure. Then, if it is ac-
cidentally inserted in place of the destination diskette, the screen will display an
ERROR-144, and your source diskette will still be intact.

Selecting a DOS Menu Option 37

DUPLICATION
USING MULTIPLE
DISK DRIVES

38 Selecting d DOS Menu Option

If you type any character other than Y in response to the TYPE "Y" IF OK
TO USE PROCRAM AREA message, the program aborts and the SELECT ITEM OR
RETURN FOR MENU prompt appears on the screen.

Figure 4-9 is an example of duplication using a single disk drive:

SELECT ITEM OR RETURN FOR MENU
J
DUP DISK-SOURCE, DEST
1,1
INSERT SOURCE DISK, TYPE RETURN
TYPE "Y" IF OK TO USE PROGRAM
CAUTION: A "Y" INVALIDATES MEM. SAY

Y
INSERT DESTINATION DISK, TYPE RETURN

SELECT ITEM OR RETURN FOR MENU

Figure 4-9 Using the Duplicate Disk Option With a Single Disk Drive

Note: The number of times the DUP program requests you to insert the source and
destination diskettes depends on the number and size of the file(s) to be duplicated
for a given system and the amount of RAM in the system. To copy a diskette that is
full, a 48K system might require only two insertions, whereas a 16K system might
require five or six diskette insertions.

If you are using both the ATARI 810 and ATARI 815 Disk Drives, make sure you
distinguish between files stored using the single-density and double-density for-
mats when labeling the diskettes. This will keep you from using them in the wrong
disk drive.

For a multiple disk drive system, it is also necessary to save a RAM-resident BASIC
program, as the user's program area will be altered and MEM.SAV will be invali-
dated. Notice that the source diskette is inserted in Drive 1 and the destination
diskette into Drive 2 (Figure 4-10) You can use any two of the same disk drive
models.

The cursor remains on the screen during the duplication process. This process can
take several minutes if the source diskette is almost full.

SELECT ITEM OR RETURN FOR MENU
J lC:,Jj;il:;.;:%1
DUP DISK- SOURCE, DEST DRIVES
1,2
INSERT BOTH DISKS, TYPE RETURN

TYPE "Y" IF OK TO USE PROGRAM AREA
CAUTION: A "yn INVALIDATESMEM. SAY

Y
SELECT ITEM OR RETURN FOR MENU

Figure 4-10 Using the Duplicate Disk Option With Dual or Multiple Disk Drives

K. BINARY SAVE Note: This instruction will probably not be used by a beginning ATARI Personal
Computer user. Unless you understand hexadecimal numbers and have some
knowledge of assembly language, you may not wish to read the information
beyond the first example.

Use this Menu selection to save the contents of memory locations in object file
(binary) format. Programs written using the Assembler Editor cartridge also have
this format. The parameters for this selection: START, END, INIT, RUN, are hexa-
decimal numbers. The START and END addresses are required parameters for any
binary file or program. The INIT (initialize) and RUN addresses are optional
parameters that allow you to make any program execute on loading. See Examples
2,3, and 4.

In the example below, a file to be called BINFIL.OBJ with the starting address 3COO
and the ending address 5BFF is saved on a diskette in Drive 1.

Figure 4-11 is an example of the use of BINARY SAVE:

Example 1:

SElECT ITEM OR RETURN FOR MENU

SAVE- FILE, END, INIT, RUN
BINFIL.OBj, 3COO, 5BFF 'ftlmm
SElECT ITEM OR RETURN FOR MENU

Figure 4-11 The Most Elementary Use of Binary Save

All binary files, like those you would create with the BINARY SAVE option or with
the Assembler Editor cartridge, have a common 6-byte header that precedes the
file (see Figure 4-12). From the header data shown in the table, you can easily pick
out the starting address and ending address that was used in Figure 4-12.

ADVANCED
USER
INFORMATION
ABOUT
OPTIONAL
PARAMETERS

Header
Byte #

#1
#2
#3
#4
#5
#6

Decimal
Number

255
255
o
60
255
91

Hex
Number

FF
FF
00
3C
FF
5B

Description

Identification code for
binary load file
Starting address (LSB)

(MSB)
Ending address (LSB)

(MSB)

File data segment contains
8191 (Dec) bytes of data.

Figure 4-12 Six-Byte Header Table for Binary Save

The two optional parameters, INIT and RUN, offer the means to make a binary
assembly language file execute automatically after loading. A file that makes use
of either or both of these address parameters is called a "load-and-go" file. A file
that does not contain data for these parameters is called a "load" file, since it loads
into the computer but will not execute until a M. RUN AT ADDRESS command is
given.

Selecting a DOS Menu Option 39

USINC BINARY
SAVE WITH
OPTIONAL
PARAMETERS

40 Selecting a DOS Menu Option

In general, the RUN address parameter defines the point in a program where execu-
tion will begin as soon as a whole file is loaded into RAM (i.e., when End of File is
reached). For this reason there can only be one effective RUN address even if a file
is a compound file. For example, a file could be made up of several small files ap-
pended together with each of the original small files having their own RUN ad-
dress. In this case, only the last RUN address to be loaded would execute. **

If an IN IT address is specified, then as soon as the actual address gets loaded into
RAM, the code that it points to will be executed. This is true even if the file is made
up of several load-and-go files appended together. In such a case each load-and-go
segment which has an INIT address specified will be executed when the INIT ad-
dress is loaded. Thus, each segment would load and be executed before the next
segment would be loaded, etc.* Execution of code pointed to by any INIT address
always precedes the execution of any code pointed to by a RUN address.

Files created by the Assembler Editor cartridge using the load-and-go option can be
stored in the desired INIT and RUN addresses in your code followed by the code to
be controlled. The RUN address is always stored in Locations 2EO (LOW) and 2E1
(HICH) Hex. The INIT address is always stored in Locations 2EZ (LOW) and 2E3
(HICH) Hex. Remember, the INIT address is executed as soon as it is loaded, so the
code that it points to must have been previously loaded.

Note: lOeB #1 is open during the execution of code pointed to by any INIT ad-
dress. For this reason it is not available and must not be tampered with by the user
program being executed.

**An RTS (RETURN) at the end of a program will always return control to DOS II.

* Each code segment must end with an RTS (RETURN) if the next segment is to be
loaded or, if it is desired, returned to DOS II control.

The example in Figure 4-13 illustrates an assembly language program that uses a
data area that must be initialized before the main program can use it. Suppose the
initialization code resides from address 4000 (Hex) to 41FF (Hex) and the main pro-
gram resides between 4200 (Hex) and 4FFF (Hex). For purposes of illustration,
assume that both the initialization code and main program contain executable
code and the initialization code ends with an RTS (RETURN).

In the following example we assume the program, LACPRC.OBj, is already in
memory.

Example 2:

SELECT ITEM OR RETURN FOR MENU
K
SAVE-GIVE FILE, START, END, INIT, RUN
LACPRC.OBj, 4000, 4FFF, 4000, 4200
SELECT ITEM OR RETURN FOR MENU

Figure 4-13 Using Binary Save With Optional Parameters

The following events will occur on loading this file into memory:

1. Memory from 4000 to 4FFF will be filled with the program

2. The INIT address 4000 (Hex) is stored in Memory Locations 2E2 and 2E3 (Hex)

STRUCTURE OF
A COMPOUND
FILE

3. Initialization program from 4000 to 41FF will execute.

4. The RUN address 4200 (Hex) is stored in Memory Locations 2EO and 2E1 (Hex).

5. Main program from 4200 to 4FFF begins to execute and will continue to do so
until a RETURN (RTS) is executed, or a or occurs.

In the case of compound files, the result is more complicated, depending on how
the now appended files were created. The next section illustrates several cases
where files have been appended.

Before considering the next example, look at the structure of a compound file. A
compound file is constructed of various binary files that have been appended
together. This can be done in one of two ways. One way is to use the C. COpy
FILE option with its append option. A compound file created with this command
is not compatible with the Assembler Editor loader, although it can be loaded us-
ing the L. BINARY LOAD option of DOS II. If compatibility with the Assembler
Editor cartridge is desired, an alternate way to create a compound file is to use
the K. BINARY SAVE option we have been discussing. The two types of files are
illustrated in Appendix I. The only real difference is that the FFFF (Hex) identifica-
tion code is included with every segment when a compound file is created using
C. COpy File.

When K. BI NARY SAVE is used, the additional identification codes for each seg-
ment (after the first one) are NOT included in the final file. This is the only form
of compound file that is compatible with the Assembler Editor cartridge. The L.
BINARY LOAD option of DOS II, however, is compatible with both types of com-
pound files.

Now consider what happens when a compound file like this is loaded-supposing
various INIT and RUN addresses were specified for each of these files before
they were appended. (It will help you to think of the INIT and RUN addresses as
being part of the data in each segment, which they are essentially.)

Example 3:
Suppose you have three files, each of which has a RUN address, but no INIT ad-
dress included in its data. The example in Figure 4-14 shows one way a file of this
type might be created.

SELECT ITEM OR RETURN FOR MENU
K fti:J1!liJ,;,'7;
SAVE FILE-GIVE FILE, START, END, INIT, RUN
PART1.0BJ, 2000, 21FF" 2000 rJ;lt",m
SELECT ITEM OR RETURN FOR MENU

SELECT ITEM
K ';:1"Jil'4;'!.'j
SAVE ITEM-OR RETURN-FOR MENU
PART2.0BJ/A, 2200, 23FF" 2200
SELECT ITEM OR RETURN FOR MENU

Figure 4-14 Using Binary Save to Save Compound Files

Selecting a DOS Menu Option 41

42 Selecting a DOS Menu Option

The other two files, PART2.0Bj and PART3.0Bj that are created the same way as
PART1.0BJ, can then be merged into WHOLE.OBj by using the K. BINARY SAVE
or C. COpy FILE option with the append option. What happens now when this
new file is loaded?
1. PART1.0Bj loads, but does not execute (no INIT).

2. RUN address for PART1.0Bj is stored in 2EO and 2E1.

3. PART2.0Bj loads, but does not execute (no INIT).

4. RUN address for PART2.0Bj is stored in 2EO and 2E1, which overwrites
PART1.0Bj RUN address

5. PART3.0Bj loads, but does not execute (no INIT).

6. RUN address for PART3.0Bj is stored in 2EO and 2E1, which overwrites
PART20Bj RUN address

7. Execution begins at RUN address of PART3.0Bj since you are now at the end
of the file.

Example 4:

For another example of a compound file (Figure 4-15), consider a three-segment
file, BICFILE.OBj. Suppose each segment loads into a different area of memory
and that

SEC1.0Bj has an INIT address, but no RUN address,
SEC2.0Bj has no INIT or RUN address,
SEC3.0Bj has an INIT address and a RUN address for SEC2.0Bj and, in addition, is
loaded on top of SEC10Bj

When BICFILE.OBj is loaded, the following events occur.

SEG1.0B) is loaded.

SEG1.0B) executes starting at its INIT address.

SEG2.0B) is loaded.

SEG3.0B) is loaded on top of SEG1.0B).

SEG3.0B) executes starting at its INIT address.

SEG2.0B) executes starting at the RUN address specified in SEG3.0B).

Clearly, this option gives you great power and flexibility for creating large files that
load and execute immediately.

Example 5:

To convert an existing load-only file to a load-and-go file, you can load the file in-
to memory and then save it under a new filename using the K. BINARY SAVE
Menu option. This poses some problems, as you can sometimes forget the final
address the file occupies, or the file could be compounded with the segments not
necessarily consecutive in memory. Therefore, the new file would take up more
space on the diskette than the old, etc. You can avoid these problems by using
the procedure shown in the following example. This example illustrates a load
file with a run address of 4000 Hex that is changed to a load-and-go file.

L. BINARY LOAD

In Figure 4-15, a one-byte file located at FFOO (in the O. S. ROM) is appended to the
end of your file LOADFIL.OBJ. Since this file's run address is the same as the ad-
dress at which your load file normally runs, your load file begins execution as soon
as the entire appended file is loaded into RAM.

SElECT ITEM OR RETURN FOR MENU
K
SAVE FILE-GIVE FILE, START, END, INIT, RUN
LOADFIL. OBJ/A, FFOO, FFOO" 4000
SElECT ITEM OR RETURN FOR MENU

Figure 4-15 Converting an Existing Load-Only File to a Load-and-Co File

Note: This instruction will probably not be used by a beginning AT ARI Personal
Computer user.

Use this selection to load into RAM an assembly language (binary) file that was
previously saved with menu option K. or created by the Assembler Editor cartridge.
If the RUN address or INIT address was appended to the file in Locations 2EO and
2E1 or 2E2 and 2E3, the file will automatically run after being entered. In a load-
and-go file, INIT and RUN addresses are ignored when you type IN after the
filename (see Example 1 in Figure 4-16). The file can then be run using the RUN AT
ADDRESS Menu option.

An example of using this option without the IN option is shown in the second exam-
ple in Figure 4-16. Since this file had the starting address in Locations 2EO and 2E1
appended to it (see Example 1 for K. BINARY SAVE), the file will begin executing as
soon as the load is complete.

Example 1:

SElECT ITEM OR RETURN FOR MENU
L
LOAD FROM WHAT FiLE?
MYFILE. OSJ/N '&rkirJ.J
SElECT ITEM OR RETURN FOR MENU

Example 2:

SElECT ITEM OR RETURN FOR MENU
L
LOAD FROM WHAT FILE?
BINFIL. 0 BJ

Example 3:

SElECT ITEM OR RETURN FOR MENU
L ''j)J;,'fJl:J:.$
LOAD FROMWHAT FILE?
MACHL. 0 BJ
SElECT ITEM OR RETURN FOR MENU

Figure 4-16 Using the Binary Load Option

Selecting a DOS Menu Option 43

M. RUN AT
ADDRESS

N. CREATE MEM.
SAY

44 Selecting a DOS Menu Option

Example 3 in Figure 4-16 illustrates a file called MACHL.OBJ that does not have a
RUN address or an INIT address. In this case, the SELECT ITEM OR RETURN FOR
MENU prompt message will display on the screen as soon as the file finishes
loading.

To execute a file that has no appended RUN or INIT address, see the next menu op-
tion, M. RUN AT ADDRESS.

Note: This instruction will probably not be used by a beginning AT ARI Personal
Computer user.

Use this selection to enter the hexadecimal starting address of an object file pro-
gram after you have loaded it into RAM with the BINARY LOAD selection This
selection is used when the starting address has not been appended to the object
file.

In Figure 4-17, the instructions at hexadecimal Location 3000 will begin executing.
Be very careful when entering these hexadecimal address locations. If you enter an
address that does not contain executable code, it will create problems. As an exam-
ple, you could lock up the system, making it necessary for you to reboot.

SElECT ITEM OR RETURN FOR MENU
M amY::J
RUN FROMWHAT ADDRESS?
3000 mm:fIfIll

Figure 4-17 Using the Run at Address Option

This option allows you to create a file on diskette called MEM.SAV into which the
contents of lower user memory are saved whenever you call DOS. When you type
DOS the computer saves the RAM-resident user program (if any) in the

before it brings the diskette file DUP.SYS into RAM. When you have
finished using the DOS options, you simply return control to the cartridge by typing
B and MEM.SAV will automatically reload your program into RAM. If you
are not using a cartridge, typing B has no effect. You will have to respond to the
SELECT ITEM OR RETURN FOR MENU prompt.

You must be careful not to allow DOS to use all of user memory when you want
the COpy FILE, DUPLICATE FILE, or DUPLICATE DISK options for saving the ex-
isting data. DOS does not know if ALL or only part of your program has been saved
in MEM.SAV. When DOS utilizes all of user memory, it automatically invalidates
the MEM.SAV file. If this occurs, your program will not be reloaded when control is
returned to the cartridge.

SElECT ITEM OR RETURN FOR MENU
N fJJJ1II.i'l.1
TYPE "Y" TO CREATE MEM.SAV

SElECT ITEM OR RETURN FOR MENU

Figure 4-18 Creating a MEM.SAV File

WHY HAVE A
MEM. SAV FILE?

USING MEM.
SAV TO WRITE
ASSEMBLY
LANGUAGE
PROGRAMS

If you attempt to use this option to create a MEM.SAV file on a diskette that
already has a MEM.SAV file, the screen will display the message MEM.SAV FILE
ALREADY EXISTS and follow it with the prompt message SELECT ITEM OR
RETURN FOR MENU. Figure 4-18 illustrates the steps for creating a MEM.SAV file
on a diskette inserted in Drive 1. Note that MEM.SAV files can only be created on a
diskette in Drive 1.

This special file allows you to save your RAM-resident program temporarily in a
special file on diskette. To be effective, MEM.SAV (which requires 45 sectors) must
be on the diskette inserted in Drive 1. This diskette must not be write-protected if
MEM.SAV is to work. Once MEM.SAV exists on your diskette, then the area of user
memory to be overwritten by DUP.SYS will be stored in MEM.SAV every time DOS
is called. Essentially, you are performing a swap contents operation, thereby "ex-
panding" your user program area. This swap takes about 21 seconds. When you
return control of the computer system to the cartridge, the DUP.SYS file is in turn
overwritten as the contents of MEM.SAV are loaded back into RAM automatically.
This operation takes about seven seconds.

If you are working on a BASIC program and need to return to DOS for some reason,
you can do so using MEM.SAV without having to save your program to diskette
and reenter it. When you finish using DOS and return control of the computer
system to the cartridge, the MEM.SAV file is automatically reloaded into memory
and your BASIC program is restored into user program memory.

An example of MEM. SAY usage is in Figure 4-19.

1. Type LOAD "D:MYPROG. BAS"

2. Edit your program and then type RUN Y1t!J!;,rt/JJ.r:J.

3. It works and you want to RENAME the original file to keep as a backup copy.

4. Type DOS

5. Make your Menu selection (E for RENAME FILE) and rename your original file
to MYPROC. OLD.

6. Type B to BASIC. With the help of MEM.SAV, your modified
version BAS is automatically reloaded into RAM.

7. Type SAVE "D:MYPROC.BAS" to save your modified program under
the original name.

Figure 4-19 Example of MEMSAV Usage

The MEM.SAV file also allows you to write assembly language programs (or load
in binary data) that share the user program area with DUP.SYS. This means you are
free to write programs or load data in the area from LOMEM (which fluctuates with
the number of drives in the system and the number of files that can be open con-
currently) to HIMEM (which fluctuates depending on which Craphics Mode you
are in). See Appendix C, Memory Map.

Example:

Suppose you have a binary file you want to execute automatically as soon as it is
loaded. This type of file is called a load-and-go file. The run address is already pro-

Selecting a DOS Menu Option 45

USING MEM.
SAY TO LOAD
BINARY FILES

46 Selecting a DOS Menu Option

grammed into such a file and you will not need to select the RUN AT ADDRESS op-
tion. In this case, it is not necessary to have a MEM.SAV file on your diskette. Since
the file is load-and-go, it will simply load and then begin to execute. The safest way
to get back to DOS is to reboot your computer. If you have not overwritten the
DUP.SYS program during the execution of your binary file, then you can recover by
simply executing a RETURN (RTS) in your program. If your binary file overwrites
DUP.SYS during the time it is loading, DOS will keep track of this fact and will
automatically reload and execute DUP.SYS after the RETURN in your program is
executed.

Warning; If the execution of your load-and-go file writes into any areas below LO
MEM used by DOS.SYS, DUP.SYS, or a RAM area used by the Operating System,
the RETURN (RTS) from your program may leave the computer in an undefined
state. Should this occur, you may have to power up the computer again to
recover.

This section deals with loading a binary file that is not to be executed at the same
time it is loaded, or loading a file that contains data for another program. If your
LOAD file does not overlay any part of the DUP.SYS area, then a MEM.SAV file is
not required.

If your LOAD file overlays any part of the DUP.SYS file, you must have a MEM.SAV
file on the diskette in Drive 1 if the load is to be successful. If you do have
MEM.SAV, the following actions take place after you execute an L. LOAD BINARY
FILE option:

1. You use the LOAD BINARY FILE selection to load your file.

2. Your original MEM.SAV is loaded from disk into memory overlaying and invali-
dating DUP.SYS.

3. Your file is loaded on top of the original MEM.SAV modifying part or all of the
original MEM.SAV file.

4. Your new MEM.SAV file in RAM is saved in the MEM.SAV area on the diskette.

5. DUP.SYS is reloaded from diskette into memory.

6. You remain in DOS until you choose either to:

RUN CARTRIDGE at which time your file is loaded into memory from
MEM.SAV and you come up under the control of your
BASIC or assembly language cartridge.

RUN AT ADDRESS at which time your file is loaded into memory from
MEM.SAV and you begin execution of whatever code
is at the address you specified.

LOAD BINARY FILE where you wish to load a load-and-go file. In this in-
stance, if the new file also overlays a part of DUP.SYS,
but not the original file, then both MEM.SAV and your
new file will now be in memory when the load is com-
plete. If the new file does not overlay DUP.SYS at all,

o. DUPLICATE
FILE

then the load will complete with only the new file load-
ed into RAM. Since the new file is a load-and-go and
loaded whether DUP. SYS is overlaid or not, you will
come up under the control of this file until a RETURN
(RTS) is executed.

Note: If you wish to have two files in memory simultaneously, one of which resides
wholly or in part in the DUP.SYS area and the other of which resides wholly outside
of the DUP.SYS area, the easiest way to achieve this is by merging the two files into
one file and then loading the newly merged file.

This option is used if you have only one disk drive and want to copy a file from one
diskette to another. Remember that a single disk drive must always be set up as
Drive 1. Since there is only one disk drive, you must manually insert and remove
the source and destination diskettes. If a file is very long, you may have to alter-
nate the source and destination diskettes several times before the duplication pro-
cess is complete. Allowing DOS to take over user memory will reduce the amount
of diskette switching required to copy long files. However, you must remember this
will mean that your MEM.SAV file will be invalidated.

Wild cards are available with this option. In Example 2 you will notice that even if
you do give DOS permission to take over user memory (with a wild card filename),
your files are still copied one at a time. You will have to alternate diskettes at least
once for each filename that you want to copy.

The second example illustrates using a wild card to copy files having five letters
and beginning with TEST from one diskette to another. This example assumes the
source diskette has only two files with names that satisfy TEST?

In Example 3, both the filename and extenders have been replaced with wild cards.
DOS will therefore copy all files except those that have an extender of .SYS. This
example assumes only three files are to be copied: MEM.SAV, TEST1, and TEST2.

Example 1:

SElECT ITEM OR RETURN FOR MENU
o
NAME OF FILE TO MOVE?
DOSEX. BAS
TYPE "y" IF OK TO USE PROGRAM AREA
CAUTION: A "y" INVALIDATES MEM.SAV
Y
INSERT SOURCE DISK, TYPE RETURN

INSERT DESTINATION DISK, TYPE RETURN

ITEM OR RETURN FOR MENU

Selecting a DOS Menu Option 47

48 Selecting a DOS Menu Option

Example 2:

SELECT ITEM OR RETURN FOR MENU
o
NAME OF FILE TO MOVE?
TE ST? li!idfJi;$;ZI
TYPE "Y" IF OK TO USE PROGRAM AREA
CAUTION: A "Y" INVALIDATES MEM.SAV
Y
INSERT SOURCE DISK, TYPE RETURN

COPYING---D1: TESn
INSERT DESTINATION DISK, TYPE RETURN

INSERT SOURCE DISK, TYPE RETURN

COPYING-.. D1: TESn
INSERT DESTINATION DISK, TYPE RETURN

INSERT SOURCE DISK, TYPE RETURN

SELECT ITEM OR RETURN FOR MENU

Example 3:

SELECT ITEM OR RETURN FOR MENU
o
NAME OF FILE TO MOVE?

TYPE "Y" IF OK TO USE PROGRAM AREA
CAUTION: A "Y" INVALIDATES MEM.SAV
Y
INSERT SOURCE DISK, TYPE RETURN

COPYING-D1: MEM.SAV
INSERT DESTINATION DISK, TYPE RETURN

INSERT SOURCE DISK, TYPE RETURN

COPYING---D1: TESn
INSERT DESTINATION DISK, TYPE RETURN

INSERT SOURCE DISK, TYPE RETURN

COPYING---D1: TESn
INSERT DESTINATION DISK, TYPE RETURN

INSERT SOURCE DISK, TYPE RETURN

SELECT ITEM OR RETURN FOR MENU

Figure 4-20 Using the Duplicate File Option

BASIC
COMMANDS
USED WITH DOS

TOKENIZED AND
UNTOKENIZED
FILES

5
MORE USER INFORMATION

Before describing the BASIC commands used with DOS II, you need to know how
the commands will act on programs being stored and retrieved. The following para-
graphs explain the two types of files that can hold BASIC programs.

The first type of file, called "untokenized." contains standard ATASCII text
characters so it looks like a printout of a BASIC program. These programs do not
retain their symbol tables each time they are loaded and saved. The symbol table
associates the variable name with the memory location where the values for that
variable are stored. To store and retrieve a file in its untokenized form, you use the
LIST and ENTER commands.

The second type, called a "tokenized" file, is a condensed version of a BASIC pro-
gram. It has one-byte "tokens" instead of the ATASCI I characters to represent the
BASIC commands.

Tokenized programs are moved back and forth between the disk drive and the
computer console by SAVE and LOAD commands. Tokenized versions of a file are
generally shorter than untokenized versions. For this reason, many programmers
prefer to store their final programs in the tokenized form because they will load
faster and use less disk space. A tokenized version retains its symbol table from
retrieval to retrieval.

LOAD (LO.)

Format:
Example:

LOAD filespec
LOAD "D1: DOSEX.BAS"

This command is used to load a file from a particular diskette in a disk drive into
the user program RAM area. To use this command to load a file called DOSEX.
BAS, the file (DOSEX.BAS) must have been previously saved using the BASIC com-
mand, SAVE. This command only loads a tokenized version of a program.

This command can also be used in "chaining" programs (Figure 5-1). If you have a
program that is too big to run in your available RAM, you can use the LOAD com-
mand as the last line of the first program (Figure 5-1). Therefore, when the pro-
gram encounters the LOAD statement, it will automatically read in the next part of
the program from the diskette. However, the second program must be able to stand
alone without depending on any variables or data in RAM from the first program.
The loaded program will not execute until you type RUN at which time the
previous program and any variables will be cleared (see RU another example).

More User Information 49

100 REM
110 LOAD

Chain program
"01: CHAIN.BAS"

Figure 5-1 Example of Program Chaining

SAVE (S.)

Format:
Example:

SAVE filespec
SAVE "D1: EXAMP2. BAS"

This command causes the computer system to save a program on diskette with the
filespec name designated in the command. SAVE is the complement of LOAD and
stores programs in tokenized form.

LIST (L.)

Formats: LIST filespec ,Iineno ,Iineno
device

Examples: LIST "D: DATFIL.LST"
LIST "P:"
LIST "P:", 10, 100

One use of the LIST command in BASIC is very similar to the SAVE command as it
can take a program from user program RAM and store it onto a particular drive
with any name you want to assign it (illustrated by the first example). However, the
program is stored in standard AT ASCII text and not as tokens. Differences in the
formatting of data storage also allow LIST to be much more flexible than SAVE. As
shown in the above format examples, you can specify a single device (e.g., P:, E:, C;
D:, D2:, etc.), or you can specify line numbers to be listed to a designated device
(e.g.. "P:", 100, 200).

If you do not specify a device after the LIST command, any line numbers you enter
will be displayed on the screen. The screen (E:) is always the default device for this
command.

In summary, the principle difference between LIST and SAVE is that LIST moves
standard AT ASCII text to a number of different devices whereas SAVE can only
save tokenized BASIC programs on a diskette.

ENTER (E.)

Format:
Example:

ENTER filespec
ENTER "D: L1ST2.LST"

50 More User Information

This command causes the computer to move a file on diskette with the referenced
filespec into RAM. The program is entered in untokenized form and is interpreted
as the data is received. ENTER, unlike LOAD, will not destroy a RAM-resident
BASIC program, but will merge the RAM-resident program and the disk file being
loaded. If there are duplicate line numbers in the two programs, the line in the pro-
gram being entered will replace the same line in the RAM-resident program.

RUN
Format:
Example:

RUN filespec
RUN "D2: MYFILE.BAS"

INPUT/OUTPUT
CONTROL
BLOCKS

IOCB's WITH
INPUT/OUTPUT
COMMANDS

This command causes the computer to LOAD and RUN the designated filespec. It
is a combination of the two commands, LOAD and RUN. However, the RUN com-
mand can only be used with tokenized files. Therefore, you cannot execute a RUN
"D2: L1ST.LST" command.

To chain programs and cause a second segment of a file to load and run automati-
cally, you can use a RUN "D: filespec" as the last line of the first segment. How-
ever, the second program must be able to stand alone without depending on any
variables or data in RAM from the first program. Before running the first segment,
make sure you have saved it on a diskette, as the RUN statement will wipe out your
RAM-resident first segment when the second segment is loaded.

An I/O operation is controlled by an I/O Control Block (IOCB). An 10CB is a
specification of the I/O operation, consisting of the type of I/O, the buffer length,
the buffer address, and two more auxiliary control variables of which the second is
usually O. ATARI BASIC sets up eight 10CB's and dedicates three to the following:

• 10CB #0 is used by BASIC for I/O to E:

• 10CB #6 is used by BASIC for I/O to S:

• 10CB #7 is used by BASIC for LPRINT, CLOAD, and SAVE commands.

10CB's #1 through #5 can be used freely, but the dedicated 10CB's should be
avoided unless a program does not make use of one of the dedicated uses men-
tioned above. 10CB #0 can never be opened or closed from a BASIC program.

Each input/output command must have an 10CB associated with it. The I/O com-
mands that can be used in connection with DOS II are the following:

OPEN/CLOSE
INPUT/PRINT
PUT/GET
STATUS
XIO

USING THE
OPEN/CLOSE
COMMANDS

OPEN (0.)

Format:
Example:

OPEN #iocb, aexp1, aexp2, filespec
100 OPEN #2, 8, 0, "D1: ATARI800.BAS"

The OPEN statement links a specific 10CB to the appropriate device handler, in-
itializes any CIO-related control variables (see Glossary), and passes any device-
specific options to the device handler. The parameters in this statement are de-
fined in Figure 5-2.

More User Information - 51

#
iocb

aexp1

aexp2

filespec

Mandatory character entered by user.
A number between 1 and 7 that refers to a device or file.
Number that determines the type of operation to be performed.

Code 4 = input operation; positions file pointer to start of file.
6 = disk directory input operation.
8 = output operation; positions file pointer to start of

file.
9 = end-of-file append operation; positions file pointer to

end of file.
Code 9 allows program input from screen editor
without user pressing 1miI!Iir::J.

12 input and output operation; positions file pointer to
start of fi Ie.

Device-dependent auxiliary code. An 83 (ASCII S) in this position
causes the AT ARI 820™ Printer to print sideways; otherwise it is
always 0 (zero).
Specific file designation (see Section 1 for filespec definition).

Figure 5-2 Explanation of OPEN Statement Parameters

In the example, OPEN #2, 8, 0, "D1: ATARI800.BAS", 10CB #2 is opened for output
to a file on Drive 1 designated as ATARI800.BAS If there is no file by that name in
Drive 1, the DOS creates one. If a file by that name already exists, the OPEN state-
ment destroys that file and creates a new one. If the 10CB has already been
opened, the screen displays an ERROR-129 (File Already Opened).

CLOSE (Cl.)

Format:
Example:

CLOSE #iocb
300 CLOSE #2

52 More User Information

The CLOSE command releases the 10CB that had been previously opened for
read/write operations. The number following the mandatory # must be the same as
the 10CB reference number used in the OPEN statement (see example below). If
the 10CB has already been opened to one device and an attempt is made to open
the same 10CB to another device without closing, the first ERROR-129 displays on
the screen. The same 10CB cannot be used for more than one device at a time. You
will not get an error message if you close a file that has already been closed.

10 OPEN #1, 8, 0, liD: FIl.BAS"
20 ClOSE #1

Figure 5-3 Example of Opening and Closing a File

Note: The END command will close all open files (except 10CB #0)

USINC THE
INPUT/PRINT
COMMANDS

INPUT (I.)

Format:

Examples: 100 INPUT #2; X, Y
100 INPUT #2; N$

This command is used to request data (either numerical or string) from a specified
device. INPUT is the complement of PRINT. When used without a #iocb, the data is
assumed to be from the default device (E:). INPUT uses record I/O (see PRINT).

5 REM **CREATE DATA FILEtt
7 REt"l l,HTH ::: CF.:EATE:::; FILE:';'::::·
10 OPHi #1, B., e. -n l·JPITE. DAT"
20 DHl 60)
30 ? A THAf{ 60

. "
35 INPUT loJRT$
3B REt1 DATA TO DISKETTE:,;::;:;::

;,40 PRHH #1.. l,JPT$
45 RHl OATA FILE:=i::::;:;
50 CLOSE #1
55 CJF'Et'4 DATA FILE FOR
ss REt1 4 F:: A F.'EAD
60 #1.< 4.,0.. "D' DAT"

70 #1.,
75 REt"l :n: PRIt·H
00
85 REr', (:LCJ::;E DATA FILE::;:::L
90 CLOSE #1

Figure 5-4 Sample INPUT/PRINT Program

In Figure 5-4, Line 35 allows the user to type in data on the keyboard (default
device). In Line 70, the INPUT statement reads the contents of the string from the
opened file.

PRINT (PR. or 1)

Format:

Examples:

PRINT{#iOCb} [{;} [exp]. ..]
[exp]

100 PRINT #2; X, Y
100 PRINT #2; A$
100 ? C$
100 PRINT "X = ",X

This command writes an expression (whether string or arithmetic) to the opened
device with the same 10CB reference number.

More User Information 53

If no 10CB number is specified, the system writes the expression to the screen,
which is the default device. If the information is directed to a device that is not
open, ERROR-133 displays on the screen.

PRINT performs what is called record I/O. Records are sets of bytes separated by
end-of-line characters (9B Hex). The size of a record is arbitrary. Record size can be
determined by the length of a string printed to a diskette file or the format of an
arithmetic variable. It can also be the length of a string of characters entered from
the keyboard and terminated by mrD:Jri.'I

The INPUT statement cannot (generally) read a record that is longer than 110
characters in length. If you PRINT a record to the disk that you will later want to
INPUT, it is best to Iim it the size of the PRINTE D records to 110 characters or less

Files are created sequentially and are normally accessed from beginning to end. If
you want to access the records in a file in a nonsequential manner (directly), you
can either read the file sequentially and stop at the record you want; or, you need a
special method of addressing the record you want.

DIRECT
ACCESSING
WITH THE
NOTE/POINT
COMMANDS

NOTE (NO.)

Format:
Example:

NOTE #iocb, avar, avar
NOTE #2, A, B

It 1.'-
.' 1

54 More User Information

1 RH1 - HOTE ::;TATHBH CH10
2 RH1 THI::; PF.:DGRAt1 READ:; OF DATA
3 REt1 FRIX1 THE KEYBOARD Ar'JO :::;TORE:::
4 RH1 THH1 ON DI:3K H·j FILE D: DATF IL.DAT.

5 RH1 PO I ARE STORED I 0: POIurs .OA
T.
20 DH1 A$(40)
25 OPEN #L 8 J 0} fl 0:DATFI L .DAT"
27 #2., :3 .. 0.. "D:PO IrH:::; .OAT II

30 RH1 READ LWE OF DATA Fl.:0i'1 f<:
40 A$
41 Itit A:t
42 IF k:ETUFli m·iL'y'., ::;TOF
45 IFLair:: A:t)=0 1((i
50 #1., ::< .. ''(
55 F.H·1 STORE LHiE OF DATA.
60 #L Ai
61 :;TORE POHHEF: TO E:EGF!tH; ie OF
62 REM OF DA:H.
65 PRHH #2 .. i::i".'''; 'y'
70 # _. n.i >=:.1 !iE;'r'TE # -
90 GOTO 4(1
95 REt"l It·iD ICATE OF FI
100 pF.:lt·n #2.;0.; II .. !I;

110 HiD

Figure 5-5 Sample NOTE Program

The former is very time-consuming for large files, so DOS II incorporates NOTE
and POINT to give you the capability of accessing a file randomly. To get to a
record without going through every record that precedes it, you need to let the
computer know what record you want. This requires a "note" of the file's sector, so
you use a NOTE command before each write and save the returned value in a
table.

This command gets the value of the current file pointer for the file using the
specified 10CB. The file pointer specifies the exact position in the file where the
next byte is to be read or written. This command stores the absolute disk sector
number in the first arithmetic variable and the current byte number in the second.
Sector numbers range from 1 to 719 and byte numbers range from 0 to 124. The
following program listing and sample run illustrate one way of using NOTE to store
keyboard input into a specified file location.

The printout in Figure 5-5 represents a sample of the NOTE program. In the sample
run, we used numbers, but you can type any string for A$ up to 40 characters.

This sample program was run on a diskette that contained the DOS.SYS, DUP.SYS,
and MEM.SAV files. Your sector and byte numbers may be different. Our sample
entries were 45,55,75,80,90,100,110.

45
SECTOR # = 145 8'lTE # =9
55

= 145 8'lTE # = 12
75
SECTOR # = 145 8'lTE # = 15
80
SECTOR # = 145 BYTE # = is'-'
90

= 145 B'y'TE # = '-roe
'::'.1.

100
= 145 B'y'TE # = 24

l1f1
= 145 BYTE # = '-'1-'.:::.':'

Figure 5-6 Sample Run of NOTE Program

Figure 5-6 is the sample run that appears on your screen.

POINT (P.)

Format:
Example:

POINT #iocb, avar, avar
100 POINT #2, A, B

POINT is the complement of NOTE. This command sets the file pointer to an ar-
bitrary value determined by the arithmetic variables. POINT is used when reading
specified file locations (sector and byte) into RAM. The first arithmetic variable
specifies (points to) the sector number, and the second arithmetic variable specifies
the next byte number into which the next byte will be read or written. As with the
NOTE command, the sector number range is between 1 and 719 and the byte range
is between 0 and 124. If you point outof an opened file, you will get a File Number

More User Information 55

Mismatch error message. The program listing (Figure 5-7) and sample run (Figure
5-8) contain an example of the POINT command to read data created by the pro-
gram shown as the example for the NOTE command.

When run, this program prints the keyboard input by sector and byte in reverse
order from the way it was written to the diskette.

1 REt"1 - POH1T DEi'le
2 THIS THE FILE
3 REt'1 CREATED BY At-[! PPHH::;
4 THE LItES IN ORDER.
113 OH1 8(2(1) 1)
20 OH1 At.:: 40)
25 RH1 OPEN DATA FILF
30 #1.,4.. ,:L "D;DATFIL. DATil
35 FILE
40 #2.,4.. (1 .• "[I: PO Ii·r;S .DAT'!
45 AN
50 FOR 1=0 TO 20
613 #2.; :;.:; .. '/
70 B(I J 0):::::< :B(I ,J 1)=1/

IF x=e AND Y=0 THEN LAST=I:I=20
913 I
95 PRINT FILE HJ OPDEF
100 FOR I -1 TO ,;:1 -1
110 >::=8(I ..) : '/=B(I .' 1)
1213 POlt-IT #1 .. >::., y
130 "SECTOP # =: II.; >:: .. "E:'y'TE # =

140 INPUT #1 i At
150 LPRWT At
1613 I

Figure 5-7 Sample POINT Program

B :..'
.' 1

56 More User Information

After you type the sample NOTE and POINT programs, type RUN mml
Figure 5-8 is the sample run.

SECTOR # = 145 8,,!'TE # = '-1'-.f:..O

110
SECTOR # = 145 BllTE # =: 24
100
SECTOR # = 145 8'/TE .;.;. =: ':::'1it

913
SECTOR # = 145 # =: J :-1

J.C

813

USING THE
PUT/GET
COMMANDS

PUT (PU.)
Format:
Example:

= 145 B'lTE # = j,o_'

75
:3ECTOR # = 145 BYTE u: = 12it
C"C'.J.J

SECTOR # = 145 B'lTE # = 9
45

Figure 5-8 Sample RUN of POINT Program

PUT #iocb, aexp
100 PUT #6, ASC (U AU)

T;-I r T -,Jr-.r•.
i U r ..i-c, ..;....;.

The PUT command writes a single byte (value from 0-255) to the device specified
by the IOCB reference number. In Figure 5-9 the PUT command is used to write
each number you type into an array dimensioned as A(50). You can enter up to 50
numbers, each of which should be less than 256. This command is used to create
data files or to append data to an existing file.

10 GRAPHICS 0: REM PUT.··..GET DH10
20 DIt1 A(5!-)JA$(10)
30 GRAPHI CS 0:1' II PUT At'[1 GET TO DI ::;f::: pp
OGRAt'1 E;":Ai"lPLE":1'
40 .? II Is this to be a. or' a
It-PUT A$:?
50 IF A$=" THEt·i 170
60 IF A$<>"l.JftJ TE II THHi F'RUH II l' II : GOTO 40

70 REM l'JRI TE It·JE
80 #1.. 8.< OJ 11[11 : .DAT"
90 ? "Ent.er· a. rtwilber 1ess t.hen 256": WPU
T
95 REM NUMBER
100 PUT #1., ::<
110 IF X=0 THEN CLOSE #l:GOTO 138
120 GOTO 90

Figure 5-9 Sample PUT Program

GET (GE.)

Format:
Example:

GET #iocb, avar
100 GET #2, X

This command reads a single byte from the device specified by the IOCB reference
number into the specified variable. The second part of the program example
(Figure 5-10) illustrates the GET command. It allows you to retrieve each byte
stored by the PUT command.

More User Information 57

Note that INPUT/PRINT and GET/PUT are incompatible types of INPUT/OUTPUT.
PRINT inserts end-of-line (EOl) characters between records and INPUT uses them
to determine a record. GET and PUT merely write single bytes to a file without
separating them with EOl A file created by using PUT statements looks like one
large record unless you have placed an EOl (9B Hex) character into the file.

130 GRAPHICS O:? :? IIRead data in fi1e n
ow?" :niPUT A$:?
140 IF A$=" t·iO II THHJ aD
150 IF A$< >- II 'r'E::; II THHi 130
160 REM READ OUT ROUTINE
170 OPHi #2.' 4.' (1.' II D1;E::<Ar1PL1.OAT !l

180 FOR E=l TO 50
185 r;£t1 f-iUMBEP< s > FF.:or1 FILE::;:::;::
190 GET #2 .. G:A(E)=G
200 IF G=0 THEN Goro 230
210 PRINT "B'lTE # II.; E.: "='1 j G
zze tiE>::T E
230 CLOSE #2

Figure 5-10 Sample GET Program

After you have typed the sample PUT/GET program, type RUN "it1IJ'm13
When you run the program shown in Figure 5-10 it will print the numbers entered
from the keyboard together with the byte numbers in which each was stored.

After you type the program, type RUN mm'fJ using number entries 2,5,67,54,68.
Figure 5-11 is the sample run of the PUT/GET program.

BYTE #1 =2
BYTE #2 =5
BYTE #3=67
BYTE #4=54
BYTE #5=68

Figure 5-11 Sample Run of the PUT/GET Program

USING THE
STATUS
COMMAND

STATUS (ST.)
Format:
Example:

STATUS #iocb, avar
100 STATUS #5, ERROR

The STATUS command is used to determine the condition (state) of a file. This
command is a CIO command and checks for several ways an error occurs. The first
set of possible errors it checks for is as follows:

58 More User Information

Sector buffer available?
legal device number?
legal filename?
File on diskette?
File locked?

If no, then ERROR-161
If no, then ERROR-20
If no, then ERROR-170
If no, then ERROR-170
If yes, then ERROR-167

You can also identify all I/O serial bus errors with a STATUS command. These are
as follows:

Device timeout
Device not acknowledged
Serial bus error
Serial bus data frame overrun
Serial bus checksum error
Device done

ERROR-138
ERROR-139
ERROR-140
ERROR-141
ERROR-142
ERROR-144

To use this command, you must open the file as an input-only file, then close the
file. Only then can you issue a STATUS command. It is advisable that you use the
XIO command form for this command as it is more reliable and you are able to
associate a specific filename with the error you are trying to find.

Figure 5-12 allows you to check the status of your disk drive with a TRAP state-
ment. Before running the program, turn off your disk drive.

10 0: REM TRAP.····STATUS DEr"1iJ
20 OIt1 A(50) .. A$(10) .. 0$(1)
30 GRAPHICS 0:? II PUT At·iD GET TO DI:3K PP
OGRAt1 E::-::Ar1PLE II :?
40 ? II Is tl--I i 5 to be a READ or' a TE? II :
Hf'UT A$:,';'-
50 IF 16(1
60 IF M< THEt-i 1I?1l: GOTO 4(1

70 REM WRITE ROUTINE
80 TRAP 400:OF'Et-i #1.,::: .. 0.. 1101 :E>::At'1PLl .DATil

90 ? II Enter' a number' 1e55 t.hen 256 II : WPU

100 PUT #1 .. :":
110 IF X=0 THEN CLOSE #l:GOTO 130
12€1 GOTO 90
130 (1:? :? "Read dat.a in f i 1e n
ow? II : IHPUT A$:?
140 IF A$=lIt·iQlI ao
150 IF A$< >IIYES II 13(1
160 REt'1 OUT I t·E
1'03 TRAP 400: OPEt-i #1.. 4 .. 0) II D1:E>::Ai"1PL1.DAT
II

FOR E=1 TO 50
190 GET #L G:A(E)=G
200 IF G=0 GOTO
210 PRIt-H IIB'r'TE # II.; L 1l:::1I.;G
220 t·iE:>::T E
230 CLOSE #1
240 END

More User Information 59

400 TRAP 40[ff.X1: STATUS #1.. ::;T : IF :3T-::: >-13::: A
NO ST< >139 PRIt-H "HELP":? ST: GOTD 4
30
410 ? II Is disk dr- i;....e turned on?"
420 ? II T 'yO i f tur-ned on t.he disk
dr-i I·}e _ " _; : It-4PUT 0$
430 CLOSE #1:GOTO 40

Figure 5-12 Sample STATUS Program

The XIO command is a general INPUT/OUTPUT statement used for special opera-
tions. It is used when you want to perform some of the functions that would other-
wise be performed using the DOS Menu selections. These XIO commands are used
to open a file, read or write a record or character, close a file, store status, refer-
ence a location in a file for reading or writing, or to rename, delete, lock, or unlock
a file. Note that XIO calls need filespecs.

SUBSTITUTING
THE XIO
COMMAND FOR
DOS MENU
OPTIONS

XIO (X.)

Format:
Example:

XIO cmdno, #iocb, aexp1, aexp2, filespec
100 XIO 3, #6, 4, 0, "0: TES1.BAS"

CMONO (command number) is used to designate just which of the operations is to
be performed.

CMDNO
3
5
7
9

11
12
13
32
33
35
36

OPERATION
OPEN
GET Record
GET Characters
PUT Record
PUT Characters
CLOSE
STATUS Request
RENAME
OELETE
LOCK FILE
UNLOCK FILE

EXAMPLE
XIO 3, #1, 4, 0, "0: TEST.BAS"
XIO 5, #1, 0, 0, "0: TEST.BAS"
XIO 7, #1, 0, 0, "0: TES1.BAS"
XIO 9, #1, 0, 0, "0: TES1.BAS"
XIO 11, #1, 0, 0, "0: TEST.BAS"
XIO 12, #1, 0, 0, "0: TEST.BAS"
XIO 13, #1, 0, 0, "0: TES1.BAS"
XIO 32, #1, 0, 0, "0: OLO, NEW"
XIO 33, #1, 0, 0, "0: TEMP.BAS"
XIO 35, #1, 0, 0, "0: ATARI.BAS"
XIO 36, #1,0,0, "0: OOSEX.BAS"

60 More User Information

Note: 00 not use the device name twice when renaming a file; i.e. do not use
"0: OLO, 0: NEW."

PROGRAM EXAMPLE OF XIO COMMAND USES

Figure 5-13 allows you to create a file for each month of the year into which you
can enter the names and birthdays of your family and friends. The program uses
XIO statements to create a file for each month, to lock and unlock each file as
needed by the program, and to close the file when you are through with it.

Line 20 defines the disk file 0: BIRTHOAY as FILE$. Then in Line 170, FILE$ is
opened with an XIO statement for input. The XIO statement in Line 390 unlocks the
proper file. The XIO statement in Line 400 creates the file and allows you to write
to the file. The next XIO statement, in Line 430, closes the file and the next line's
XIO statement locks the file to prevent it from being accidentally overwritten or
erased.

5 GRAPHICS 0
10 om A$(5)J0$(15)JFlLE$(20)J OATE$(20)1
Ma·a(20)IERR$(20)INAME$(40)
20 FILE$="D:BIRTHDAY. II
30 IN MOHTH I"
100 GRAPHICS (1:? "PLEASE TYPE t'1Ot-HH
ER (1-12)11
110 TRAP MONTH
120 TSTEND=0
130 MONTH=HH(MOt-HH)
140 IF t10NTH<1 OP r-1Ot-ITH>12 ? ERR$:G
OTO 100
145 GOSU8 1000+MONTH
150 FILE$(12)=STR$(MONTH)
160 EOF=0
170 TRAP 700:XIO 3J#2J4J0JFILE$
180 TRAP 600:FOR 1=0 TO 1 STEP (1
190 INPUT 12;NAME$
200 INPUT 12;DATE$
210 EOF=EOF+1
220 IF EOF=1 THEt-i ? Hi "; j'lOH$
;" ARE:lI:?
224 TEt1P=LEt·K)
225 NAME$(TEt-1P+1)=II 1I

226 NAt1E$(30)=II II

'i..'27 NAt1E$(TEMF'+2, 30)=t·lAt-1E$(TEt"1F'+ 1 ::.
230 ? NAME$JDATE$
240 NEXT I
299 REM MKE NEW ENTRIES IN 8IRTHDAYS
300 ? "WOULD 'lOU LIKE TO MAKE A
HDAY ENTR'y'lI: INPUT A$
310 IF At{ >"YES; II THEH GOTD 20
320 ? "PLEASE TYPE II

330 I NPUT
340 ? "PLEASE TYPE PER::;Ot·6 8IRTHDA'y' (t1t1-
OO-Y)')II
350 INPUT DATEt
360 l.JAL(DATE:t·»
370 IF t1Ot-HH< 1 r'1or-ITH:> 12 'c' JD
ATEt :GOTO 30J.-)
380
390 TRAP 400: ::<10 361 #3;0.,0, FILE$: #2
19,0JFILE$:GOTO 410
400 CLOSE #2: ::<10 3., #2 .. ;::, FILEt
410 PRINT #2;NAME:t
420 PRIrH #2;DATEt
430 XIO 12,#2J0;0JFILEt
440 XIO 35;#2;0;0;FILE:t
450 GOTO 300
600 CLOSE #2: IF EOF=0 ? IIt·iO 8I
YS I II;

More User Information 61

SAVING AND
LOADING
PROGRAMS AND
DATA WITH
ATARI BASIC

62 More User Information

610 MONTH=MONiH+l
IF t10HTH:>12 THHi t10tHH=1

630
640 IF GOTO 145
650 GOTI) 30(i
700 EOF=0:GOTO 600
1001 MON$=".JAt·iUAR'y'II: RETUFN
1002 t10N$=IIFEBPUAV:'II:
1003 t10H$=lIt-t:iRCH II

:

1004 MOt·U= II AF'F: ILII : F.:ETUPt·j
101-)5 F.:ETUFt·j
1006 t10N$= II .JUt·jE II :

1007 II .JJL'y'!1 : F:ETUPri
1008 MOt·j$= II AlIGU::;T II : i
10ti9
1010 t-1Ot·i$=1I0CiOBEP": FfiUPil
1011 F:ETUF.:t·;
1012 t1mj$=1I0ECEr-1E:EF.:!I·
3000 FILE$(12; 12+LHK r-1;J[·JTH;'))=:3TR!<
MONTH):? FILE$

Figure 5-13 Sample x/o Programs

When you run this program, enter a number from 1 to 12. The program will check
to see whether or not there are any entries in the file. If there are none, the screen
will display the message NO BIRTHDAYS IN followed by whatever month you
selected. If you have made entries, the screen will display the names of the people
and their birthdays for that month. In either event, the screen will display the
names and birthdays for the month you selected and the succeeding month (as a
failsafe feature so you will not forget an important birthday that comes at the first
part of the next month). When you do not wish to see another file or make another
birthday entry, type NO to each prompt message and the program will end.

You cannot modify a program in tokenized form. Therefore, to modify a program
which has been saved in tokenized form, the program should first be modified into
an untokenized version. This prevents the size of the internal symbol table (see
Tokenized and Untokenized Files) from increasing unnecessarily. In Section 3 you
used the SAVE and LOAD commands to store and retrieve programs in tokenized
form. In that same section, you used the SAVE command to store a program on
diskette as D: INTERESTSAV. What you will do in the example that follows, is to
modify INTEREST.SAV by first loading in the tokenized program and then list the
program back to diskette in the untokenized version. The untokenized version can
then be loaded into the computer and modified.

If you have erased the INTEREST.SAV program from diskette, refer to Figure 5-14
and retype it into your computer.

100 REM t** INTEREST
110 WT "IF ·....OU TYPE THE At10UtH OF PR I
t·-IC I PAL II

120 PRIt·n "ANO THE RATE 'lEA
I mLLII

130 ppun "SHmJ 'y'OU HOl·J r-1ONE·.... GRmJS
.' B'.... II
140 H:IHT "'y'EAP. TO r'1L PRESS THE E:
REAK KE'y'. II

150 PRINT
160 PRUH II.;

165 P
170 PR INT "I PATE 1/ .;

175 I
180 LET 1
190 PRItH
200 LET A=P::;::(1+R/100)··N
210 PRUH = II .;t·i
22fl PRINT II = ".;A
23f1 LET 1
240 GOTO 190

Figure 5-14 Sample Interest Program

LIST AND ENTER

Below are the steps to store and retrieve this program on diskette using the LIST
and ENTER commands. Follow the first set of instructions below if you have an
AT AR I 810 Disk Drive, and the second set of instructions below if you have an
AT ARI 815 Dual Disk Drive.

For an ATARI 810 Disk Drive:

1. Use your System Diskette to load DOS II.

2. Remove your System Diskette and put in your data diskette.

3. Type LOAD "D: INTEREST.SAV"

4. Type LIST to see D: INTEREST.SAV on the screen.

5. Now type LIST "D: INTEREST.L1S" to store the untokenized program
on diskette. (Program will not appear on screen.)

6. Type NEW liJJJilf,f1,il(This eliminates the program INTEREST.SAV in memory.)

7. Type ENTER "D: INTEREST.L1S" m'ftfJlJ. (This brings back the program in un-
tokenized form.)

8. Type LIST Using the appropriate keys, change program Line 160 from
"Principal" to "Principal Amount."

9. Type LIST "D: INTEREST.L1S" to store the change in the program
already on diskette.

10. Type ENTER "D: INTEREST.L1S" ,,,, ...

More User Information &3

&4 More User Information

For the ATARI 815 Dual Disk Drive:

1. Use your System Diskette in Drive 1 to load DOS II, and place your data
diskette in Drive 2.

2. Type LOAD "D2: INTEREST.SAY" mm!J.

3. Type LIST mm!Jto see D2: INTEREST.SAY on the screen.

4. Now type LIST "D2: INTEREST.L1S" to store the untokenized program
on diskette. (Program will not appear on screen.)

5. Type NEW Em.
6. Type ENTER "D2: INTEREST.L1S" mm:J.
7. Use the appropriate keys to change program Line 160 from "Principal" to read

"Principal Amount."

8. Type LIST "D2: INTEREST.L1S" mmm to store the change in the program
already on diskette.

9. Type ENTER "D2: INTEREST.L1S" mm!l
To run the program from diskette:

Type RUN niii@j. The computer retrieves and executes the program (see Figure
5-15). The number entries used for the INPUT statement were 1200 dollars for prin-
cipal and 12 percent for the interest rate.

RUN
IF YOU TYPE THE AMOUNT OF PRINCIPAL
AND THE INTEREST RATE PER YEAR, I WILL

SHOW YOU HOW YOUR MONEY GROWS, YEAR BY

YEAR, TO STOP ME, PRESS THE BREAK KEY.

PRINCIPAU1200
INTEREST RATE?12

YEAR = 1
AMOUNT =1343.999988

YEAR = 2
AMOUNT = 1505.28

YEAR = 3
AMOUNT = 1685.913576

STOPPED AT LINE 200

Figure 5-15 Sample Run of Interest Program

If you wish to save the original program AND the modified version, give the
modified program a new name.

To edit or change a program follow the steps below.

For saving a listed version on diskette:

Type LIST "D: INTEREST.L1S" IJii!MI and those specified lines will be merged to
the existing program.

To retrieve the listed version on diskette:

1. Type NEW IlliiDiIIl. (This deletes the tokenized version and its symbol table
from memory.)

2. Type ENTER "D: INTEREST" 13lU!l:ll1 and you will bring the untokenized version
into memory.

3. Type LIST 'MiIDillD.
Note: Change the name of the modified program if you wish to retain both the
original and revised programs.

You can also use the LIST and ENTER commands to store and retrieve data files
you may want to edit. A data file does not contain any commands or instructions.
It contains names for an address directory, numbers used for check amounts, etc.
However, you must be able to access these data files. For that, you need a pro-
gram. So before continuing, type in the sample DATA program in Figure 5-16. When
you want to stop running the program, just type a zero for the next check number
entry.

1 REM THIS PROGRAM A FILE OF CHEC
K THEIR
5 DIM CHECKNAME$(40)
7 REM WITH 8 CREATES DATA FILE**
10 #L 8) "0: CHECKS"
20 CHECKAtn=0: CHECKNAt1E$= II II

25 PRIHT IICHECK
3e I NPUT
35 IF THEN 80
38 REM **WRITE DATA TO DISKETTE**
40 IICHECK Aj'10UNTl!;
45 REt1 DATA
50 INPUT CHECKAtn
55 ::t¥. OFHi DATA FILE FOP
58 loJ!TH 4 IS A READ
60 PRINT "WHO CHECK re-.
65 F.:EAD DATA FRor'1 DI9:::ETTE:::::<::
70 INPUT CHECKNAME$
75 REt1 PR It·n DArAt:t:
80 ERROR- PINT THEN PRIN
T: GOTO 20
85 REt1 CLOSE DATA FI
90 CLOSE #1
100 CLOSE #1

Figure 5-16 Sample Program to Create a Data File

More User Information 65

66 More User Information

OPEN AND CLOSE
To access the data file, D: CHECKS, you use the BASIC command OPEN. If there is
no file by that name on the diskette, the file is automatically created. To store and
retrieve data from a program on diskette:

1. Turn on the disk drive.

2. Put a System Diskette into the disk drive.

3. Turn on the computer and boot the system.

4. Type OPEN #1, 8, 0, "D: DATA" This tells the computer to allow
writing to diskette file. DATA, in Drive 1.

5. Type PRINT #1; X; ': ";Y; ". ";Z mmm'J(X, Y, Z are numbers).

6. Type CLOSE #1 this tells the computer the file is finished

Figure 5-17 is a run of the sample program in Figure 5-16. We used the numbers 100,
101, and 102 for the CHECK NUMBER; 12.50, 24.35, and 102.67, for the CHECK
AMOUNT; John Smith, Ceorge Brown, and Heavy for WHO WAS CHECK TO?

READY
RUN
CHECK NUMBER?100
CHECK AMOUNT?12.50
WHO WAS CHECK TO?JOHN SMITH

CHECK NUMBER?101
CHECK AMOUNT?24.35
WHO WAS CHECK TO?GEORGE BROWN

CHECK NUMBER?102
CHECK AMOUNT?102.67
WHO WAS CHECK TO?HEAV.Y

CHECK NUMBERW

Figure 5-17 Run of Sample Data Program

Figure 5-18 shows you how the information in Figure 5-17 is stored on diskette.

100,12.51, JOHN SMITH
101,24.35, GEORGE BROWN
102,102.67, HEAVY
0, 0

Figure 5-18 The Information Stored on Diskette

ACCESSING
DAMAGED FILES

THE AUTORUN.
SYS FILE

There are two types of damaged files:

1. The disk directory entry, which contains the file name, directory pointer (points
to the first sector of the file), and the number of sectors in the file.

2. The file itself.

Should the DISK DIRECTORY entry be damaged, there is no way to access the file.
If the DISK DIRECTORY entry was accidentally deleted, an ERROR 170 (File Not
Found) will appear on the screen. If the number of sectors indicated in the DISK
DI RECTORY entry do not coincide (are shorter) than the actual number of sectors
in the file, an ERROR 164 (File Number Mismatch) will appear on the screen. In this
latter case, you may be able to retrieve that portion of the file which falls within
the sector range by initiating the Get Byte program in Figure 5-19.

READY

10 OPEN #1,4,0,/ID:FILE.1/1
20 OPEN #2,8,0,/ID:FILE.2/1
25 TRAP 50
30 GET #1,A
40 PUT #2,8
45 GOTO 30
50 CLOSE #1
60 CLOSE #2

Figure 5-19 Get Byte Program

Let us say File 1 = the damaged file, and File 2 = the recovery tile.

Note: You can only read the sectors that fall BEFORE the damaged sector(s). All
other sectors after the damage cannot be accessed. As a result, it would be best to
COpy the good files on the damaged diskette to a new diskette to avoid any further
problems.

If the file itself is damaged, you can also use the Get Byte program which will
transfer each good sector from the damaged file into a recovery file.

When an AUTORUN.SYS file exists on the diskette in Drive 1, that file will
automatically be loaded into RAM and executed (if appropriate) every time you
boot the system. This entire process is completed before control of the system is
returned to you. The AUTORUN.SYS file can be data; it can also be object code
that is loaded, but not executed; or, it could be object code that is loaded and then
executed as soon as the load is complete.

Figure 5-20 illustrates the use of AUTORUN.SYS to boot up directly into DOS even
if a cartridge is present. After execution, AUTORUN.SYS normally returns to the
DOS initialization routine. If during your application, it does not return, or if you
allow the use of before the return, the system initialization must be

More User Information 67

completed before proceeding. This is done by modifying two Operating System
storage locations: COLDST at address 244 (Hex) and BOOT at address 9 (Hex).
COLDST should be cleared to 00 and BOOT is set to 01.

The program listed below sets these two locations to the proper value and then
jumps indirectly to the start DOS vector.

If you do not have an Assembler Editor cartridge, you can create the equivalent file
using BASIC POKE statements and then saving the Binary File in DOS. The list of
decimal numbers to be entered is as follows:

Decimal Address

15000
15002
15005
15006
15008

Decimal Codes

162,00,
142,68,02,
232,
134,09,
108,10,00,

When these codes have been entered in BASIC, type DOS mm:. to save the file
using the K. BINARY SAVE selection from the DOS Menu.

Notice that there is no number entered for the IN IT parameter. If you turn off your
computer and then turn it back' on, you should now boot up directly into DOS. To
enter BASIC, simply type B or press ImmZJrmii

; Autorun Program

; Run DOS without going to cartridge.

COLDST = $244
BOOT = $09
DOSVEC = $OA

* = 3A98

DOSGO LDX #0
STX COLDST
INX
STX BOOT
JMP (DOSVEC)
* = Si2EO
. WORD DOSGO
. END

(HEX CODE)
A200
8E 4402
E8
8609
6C OA 00
run address at 2EO
983A

68 More User Information

SELECT ITEM OR RETURN FOR MENU
Kli.lII.!!m
SAVE-GIVE FILE, START, END [,INIT,RUN]
AUTORUN.SYS, 3A98, 3AA2" 3A98
SELECT ITEM OR RETURN FOR MENU

Figure 5-20 An AUTORUN.SYS Example for the Advanced User

ATARI
DISKETTES

ATARI810
DISK DRIVE

6

ADDITIONAL INFORMATION
ABOUT THE DISK DRIVE SYSTEM

AT ARI Diskettes are thin, mylar, circular sheets covered with an oxide similar to
that used on cassette tape. Each ATARI Diskette is 5 1/4 inches in diameter and
each is sealed in a special black jacket designed to protect it from being bent,
scratched, or contaminated.

Each disk drive requires the diskette created specifically to operate with that drive.
The ATARI 810 Disk Drive is a single-density drive and the ATARI 815 Dual Disk
Drive is a double-density disk drive. The essential difference between double-
density diskettes and single-density diskettes is that the double-density recording
technique requires a higher quality recording surface so that it can store twice as
much data in the same space. Both types of diskettes are manufactured in the
same way. The difference is that the double-density diskettes have been pretested
to guarantee they will work with the double-density recording techniques. A blank
double-density diskette should work as well on a single-density disk drive, but you
should not use a blank, single-density diskette on a double-density disk drive.

Once a diskette has been formatted for use with a single-density disk drive it can-
not be used in a double-density disk drive unless you reformat the diskette on the
double-density drive. The reverse is also true. If you have a system that uses both
types of drives and diskettes, be sure that you clearly label each diskette to show
the type of drive on which it was formatted.

The AT ARI 810 Disk Drive is a single drive with single-density recording capabili-
ties. It uses standard 5 1/4 inch flexible diskettes: AT ARI 810 Master Diskette II
(CX8104), ATARI 810 Blank Diskettes (CX8100), ATARI 810/815 Blank Diskettes
(CX8202), and AT ARI 810 Formatted Diskettes II (CX8111), each of which stores 88K
(88 thousand) bytes. The ATARI 810 Disk Drive contains a built-in microprocessor
which gives it an automatic stand-by capability. This means the disk drive motor is
not in constant operation, but waits to be "told" when it is needed.

ATARI 815 DUAL
DISK DRIVE

The AT ARI 815 Dual Disk Drive unit contains two drives and uses a double-density
recording technique. A sector on a diskette created on this drive can store 256
bytes of data on each sector, which is twice the number of bytes that the ATARI
810 Disk Drive can store in one sector.

Like the AT ARI 810 Disk Drive, this dual drive also uses standard 51/4 inch flexible
diskettes, but can store over 163K bytes on each of its two diskettes. The AT ARI
815 Dual Disk Drive has a built-in microprocessor to control the drives. Unlike the
ATARI 810 Disk Drive, the ATARI 815 Dual Disk Drive has a built-in power supply.
Each of the two drives within the AT ARI 815 Disk Drive has its own individual
device number.

Additional Information About the Disk Drive System 69

DISK DRIVE
OPERATION

When you insert a diskette into the disk drive, the spindle hole in the center is auto-
matically placed on the drive hub and the diskette is seated. The circular diskette
spins within its protective jacket. When you access the diskette, the magnetic head
is placed over the read/write surface.

When you store data on a diskette, the disk drive converts the data it receives from
the computer console into coded electrical pulses. These pulses magnetize minute
areas of the oxide coating of each diskette while the diskette is spinning.

When you retrieve data from a diskette, the disk drive positions the magnetic head
so the area of the diskette where the data is stored passes beneath it. The disk
drive's microprocessor controls the positioning and timing of the diskette.

70 Additional Information About the Disk Drive System

APPENDIX A
ALPHABETICAL DIRECTORY

OF BASIC RESERVED WORDS
USED WITH DISK OPERATIONS

Note: The period is mandatory after all abbreviated keywords.

RESERVED
WORD

CLOSE

DOS

END

ENTER

GET

INPUT

LIST

LOAD

NOTE

OPEN

ABBREVIATION

CL.

DO.

E.

GE.

I.

L.

LO.

NO

O.

BRIEF SUMMARY
OF BASIC STATEMENT

I/O statement used to close a disk file at the con-
clusion of I/O operations.

This command causes the menu to be displayed.
The menu contains all DOS utility selections.
Passes control from cartridge to DOS utilities.

Stops program execution, closes files, and turns
off sounds. Program may be restarted using
CONT. (Note: END may be used more than once
in a program.)

I/O command used to retrieve a listed program
in untokenized (textual) form. If a program or
lines are entered when a program is resident in
RAM, ENTER will merge the two programs. If
you don't want programs merged, type NEW
before using ENTER to load a program into
RAM.

Used with disk operation to input a single byte
of data into a specified variable from a specified
device.

This command requests data from a specified
device. The default device is E: (Screen Editor).

This command outputs the untokenized version
of a program to a specified device.

I/O command used to retrieve a saved program
in tokenized form from a specified device.

This command stores the absolute disk sector
number and the current byte number of the file
pointer in its two arithmetic variables.

Opens the specified file for input or output
operations. Determines the type of operations
allowed on a file.

Append ix A 71

72 Appendix A

RESERVED
WORD

POINT

PRINT

PUT

RUN

SAVE

STATUS

TRAP

XIO

ABBREVIATION

P.

PRo or?

PU.

R.

S.

ST.

T.

x

BRIEF SUMMARY
OF BASIC STATEMENT

This command is used in setting the file pointer
to a specified location (sector and byte) on the
diskette.

I/O command causes output from the computer
to specified output device in record format.

Causes output of a single byte of data; i.e., a
character, from the computer to a specified
device.

Both loads and starts execution of designated
filespec.

I/O statement used to record a tokenized version
of a program in a specified file on a specified
device.

Calls status routine for specified device.

Directs execution to a specified line number in
case of a program error, allowing user to main-
tain control of program and recover from errors.

Ceneral I/O statement used in a program to per-
form DOS Menu selections and specified I/O
commands.

APPENDIX B
NOTATIONS AND TERMINOLOGY

USED WITH DOS II

SYSTEM RESET

RETURN

CAPITAL
LETTERS

,./:; "

cmdno

exp

aexp

aexp1

aexp2

filespec

10CB

Press the IftiWilil11ii1 key on the keyboard.

Press the ii1iimmlkey on the keyboard.

Brackets. Brackets enclose optional items.

Ellipsis. An ellipsis following an item in brackets indicates you can
repeat the optional item any number of times, but are not required to
do so.

Braces. Items stacked vertically in braces indicate you have a choice
as to which item you want to insert. Select only one to put in your
statement or command.

Capital letters are used to indicate commands, statements, and other
functions you must type exactly as they appear.

Punctuation marks. These punctuation marks must be typed as shown
in the format of a command or statement. However, do not type
brackets or braces.

Command number. Used in XIO commands.

Expression. In this manual, expressions are divided into three types:
arithmetic, logical, and string expressions.

Arithmetic expression. Generally composed of a variable, function,
constant, or two arithmetic expressions separated by an arithmetic
operator (aop).

Arithmetic expression 1. This arithmetic expression represents the first
auxiliary I/O control byte when used in commands such as OPEN.

Arithmetic expression 2. This arithmetic expression represents the
second auxiliary I/O control byte when used in commands such as
OPEN. Usually it is set to O. If, however, you want to direct the ATARI
820 Printer to print sideways, you would set this arithmetic expression
to 83.

File specification. Usually a string expression that refers to a file and
the device where it is located, e.g., "D1 :MYPROG.BAS" for a file on
Drive 1.

Input/Output Control Block (IOCB). An arithmetic expression that
evaluates to a number from 1 to 7. The 10CB is used to refer to a
device or file. 10CB 0 is reserved for BASIC for the Screen Editor and
should only be used if the Screen Editor is not to be used.

Appendix B 73

lineno

var

avar

mvar

svar

74 Appendix B

Line number. A constant that identifies a particular program line in a
deferred mode BASIC program. A line number can be any integer from
o through 32767. Line numbering determines the order of program
execution.

Variable. Any variable. In this manual, variables are classified as arith-
metic variables (avar), matrix variables (mvar), or string variables
(svar).

Arithmetic variable. A location where a numeric value is stored.
Variable names can be from 1 to 120 alphanumeric characters, but
must start with an unreversed, uppercase alphabetic character.

Matrix variable. Also called a subscripted variable. An element of an
array or matrix.

String variable. A location where a string of characters may be stored.

APPENDIX C

ERROR MESSAGES
AND HOW TO RECOVER

Note: Error messages 2 through 21 should only occur when running a BASIC program.

ERROR
NO.

2

3

4

5

6

7

8

9

11

12

ERROR
NAME

Insuffic ient
Memory

Value Error

Too Many
Variables

String Length
Error

Out of Data
Error

Line Number
Creater Than
32767

Input
Statement
Error

Array or
String DIM
Error

Floating Point
Overflow!
Underflow

Line Not
Found

CAUSE AND
RECOVERY

You do not have enough memory to store the
statement, or to dimension a new string variable.
Delete any unused variable names or add more
memory. (See Section 11, BAS IC Reference
Manual for memory conservation.)

Either the expected positive integer was
negative or the value was not within the ex-
pected range.

You have exceeded the maximum number (128)
of variable names and must delete any that are
no longer applicable. (See Section 11, BASIC
Reference Manual.)

You have attempted to read from or write into
a location past the dimensioned string size or
you have used zero as a reference index. Enlarge
DIM size. Do not use zero as an index.

You do not have enough data in your DATA
statements for the READ statements.

Check line number references in statements
such as COTO and RESTORE.

You have attempted to input a non-numeric
value into a numeric variable Check your vari-
able types arid/or input data.

The DIM size exceeds 5460 for numeric arrays
or 32767 for strings; an array or string was redi-
mensioned; reference was made to an un-
dimensioned array or string.

You have attempted to divide by zero or to re-
fer to a number with an absolute value less than
1 E-99, or greater than or equal to 1 E-98.

A COSUB, COTO, or THEN referenced a non-
existent line number.

Appendix C 75

ERROR
NO.

13

14

15

16

17

18

19

20

21

ERROR
NAME

No Matching
FOR

Line Too
Long Error

COSUB or FOR
Line Deleted

RETURN Error

Syntax Error

VAL Function
Error

LOAD Program
Too Long

Device Number
Error

LOAD File Error

CAUSE AND
RECOVERY

A NEXT statement was encountered without a
matching FOR.

You have exceeded the BASIC line processing
buffer length

A NEXT or RETURN statement was encoun-
tered and the corresponding FOR or COSUB was
deleted since the last time the program was run

Check your program for a missing COSUB
statement.

The computer encountered a line with improper
syntax. Fix the line.

The string in a VAL statement is not a numeric
string.

You don't have enough memory to load your
program

You entered a device number that was not be-
tween 1 and 7.

You attempted to load a nonload file, not a
BASIC tokenized file. Tokenized files are
created with the SAVE command.

Note: The following are input/output errors that result during the use of disk drives, printers, or
other accessory devices. Further information is provided with the auxiliary hardware.

128 BREAK Abort User hit
execution

key during I/O operation. Stops

129

130

10CB* Already
Open

Nonexistent
Device

OPEN statement within a program loop or
10CB already in use for another file or device.

You have tried to access a device not in the
handler table; i.e., the device is undefined. This
error can occur when trying to access the ATARI
850™ Interface Module without running the RS-
232-C AUTORUN.SYS file. Another common oc-
currence of this error is specifying a filename
without a device; i.e.. "MYFILE" instead of
"D:MYFILE"

Check your I/O command for the correct device
Then load and initialize the correct handler.

76 Appendix C

*IOCB refers to Input/Output Control Block

ERROR
NO.

131

132

133

134

135

136

137

138

ERROR
NAME

10CB Write-
Only

Illegal
Handler
Command

Device/File
Not Open

Bad 10CB
Number

10CB Write-
Only Error

End of File

Truncated
Record

Device Timeout

CAUSEAND
RECOVERY

You have attempted to read from a file opened
for Write-Only. Open the file for read or update
(read/write).

This is a CIO error code. The common code
passed to the device handler is illegal. The
command is either < = 2 or is a special com-
mand to a handler that hasn't implemented any
special commands. Check your XIO or 10CB
command code for an illegal command code.

You have not opened this file or device. Check
your OPEN statement or file I/O statement for a
wrong file specification.

You have tried to use an illegal 10CB index.
For BASIC, the range is 1-7 as BASIC does not
allow use of 10CB O. The Assembler Editor car-
tridge requires the 10CB index to be a multiple of
16 and less than 128.

You have tried to write to a device or file that
is open for Read-Only. Open the file for write or
update (read/write).

Your input file is at end of file. No more data in
file.

This error typically occurs when the record you
are reading is larger than the maximum record
size specified in the call to CIO (BASIC's
maximum record size is 119 bytes.) When trying
to use an IN PUT (record-oriented type of com-
mand on a f11e that was created with PUT (byte-
oriented) commands, results in this problem.

When you sent a command over the serial bus,
the device did not respond within the period set
by the OS for that device command. Either the
device number is wrong or the user specified the
wrong device; the device is not there (wrong
spec); it is unable to respond within the proper
period; or it is not connected. If the device is a
cassette, the tape baud rate may have been
mismeasured or the tape improperly positioned

Examine all connections to make sure they are
secure and check the disk drive to make sure it is
turned on and set for the correct drive number.
Check your command for the correct drive num-
ber. Retry the command If this error recurs,
have the disk drive checked.

Appendix C 77

78 Appendix C

ERROR
NO.

139

140

141

142

143

144

145

ERROR
NAME

Device NAK

Serial Frame
Error

Cursor Out
of Range

Serial Bus
Overrun

Checksum Error

Device Done
Error

Illegal Screen
Mode

CAUSE AND
RECOVERY

The device cannot respond because of bad
parameters such as an unaddressable sector. The
device might also have received a garbled or
illegal command or received improper data from
the computer. Check your I/O command for
illegal parameters and retry the command. Also
check your I/O cables This is a device specific
error, so refer to the documentation for that
device.

Bit 7 of SKSTAT in the POKEY chip is set. This
means that communication from the device to
the computer is garbled.

This is a very rare error and it is fatal. If it occurs
more than once, have your device or computer
checked. You can also remove the peripherals
one at a time to isolate the problem. For cas-
settes, try the recovery suggested in Error 138.

Your cursor is out of range for the particular
graphics mode you chose. Change the pixel
parameters.

Bit 5 of SKSTAT in POKEY is set. The computer
did not respond fast enough to a serial bus input
interrupt or POKEY received a second 8-bit word
on the serial bus before the computer could
process the previous word. This is a rare error. If
it occurs more than once, have your computer
serviced.

The communications on the serial bus are gar-
bled. The checksum sent by the device is not the
same as that calculated for the frame received
by the computer. There is no standard recovery
procedure because it could be either a hardware
or software problem.

The device is unable to execute a valid com-
mand. You have either tried to write to a write-
protected diskette or device, or the disk drive is
unable to read/write to the. requested sector.
Remove the write-protect tab or turn off the
write-protect switch See specific manuals for
other devices.

You have tried to open the Screen Editor with
an illegal graphics mode number. Check your
graphics mode call or the aux2 byte in the 10CB.

ERROR
NO.

146

147

160

161

162

163

164

165

166

167

168

ERROR
NAME

Function Not
Implemented

Insufficient
RAM

Drive Number
Error

Too Many
OPEN Files

Disk Full

Unrecoverable
System I/O Error

File Number
Mismatch

File Name Error

POINT Data
Length Error

File Locked

Device Command
Invalid

CAUSE AND
RECOVERY

The handler does not contain the function; e.g.,
trying to PUT to the keyboard or issuing special
commands to the keyboard. Check your I/O
command for the right command and the
correct device.

Not enough RAM for the graphics mode you
selected. Add more memory or use a graphics
mode that doesn't require as much memory.

You specified a drive number that was not 1-8,
did not allocate a buffer for the drive, or your
drrve was not powered up at boot time. Refer to
Section 1 of this manual. Check your filespec or
byte 1802 for number of drive buffers allocated.

You don't have any free sector buffers to use
on another file. Check Location 1801 for the
number of allocated sector buffers. Also make
sure no files are open that should not be open.

You don't have any more free sectors on this
diskette. Use a different diskette that has free
sectors.

This error means that the File Manager has a
bug in it. Your DOS or the diskette may be bad.
Try using other DOS.

The structure of the file is damaged or POINT
values are wrong. One of the file links points to a
sector allocated to another file. Turn the system
off and retry program execution. If this fails, you
have lost the file. Try to recover the other files
on diskette, then reformat the diskette.

Your file specification has illegal characters in
it. Check filespec and remove illegal characters.

The byte count in the POINT call was greater
than 125 (single density) or 253 (double density)
Check the parameters in your POINT statement.

You have tried to access a locked file for pur-
poses other than reading it. Use DOS Menu op-
tion C to unlock the file and retry your com-
mand.

You issued an illegal command to the device
software interface. Check the documentation for
that device and retry the command.

Append ix C 79

80 Appendix C

ERROR
NO.

169

170

171

172

173

ERROR
NAME

Directory Full

File Not Found

POINT Invalid

Illegal Append

Bad Sectors at
Format Time

CAUSE AND
RECOVERY

You have used all the space allocated for the
Directory.

You have tried to access a file that doesn't exist
in the diskette's Directory. Use DOS Menu op-
tion A to check the correct spelling of the
filename and to be sure it is on the diskette you
are accessing.

You have tried to POINT to a byte in a file not
opened for UPDATE. Check the parameters of
your OPEN statement or aux1 byte of the 10CB
used to open the file.

You have tried to open a DOS I file for append
using DOS II. DOS II cannot append to DOS I
files. COPY the DOS I file to a DOS II diskette
using DOS II.

The disk drive has found bad sectors while
formatting a diskette. Use another diskette, as
you cannot format a diskette with bad sectors. If
this error occurs with more than one diskette,
your disk drive may need repair.

APPENDIX D
DOS II MEMORY MAP
FOR 32K RAM SYSTEM

ADDRESS CONTENTS
Decimal Hexadecimal

65535 FFFF
OPERATING SYSTEM

49152 COOO

49151 BFFF
CARTRIDGES

32768 8000

32767 7FFF
SCREEN DISPLAY AREA

varies

varies HIMEM**
USER PROGRAM AREA

varies LOMEM*

cos C38 SB7 DISK
SB6 UTILITY

2S 20 SB5 PROGRAMS
S B 4

1D7C 247C S B 3

Sector Buffer 2
Sector Buffer 1 BUFFER AREA
Drive 4 Buffer RESERVED
Drive 3 Buffer FOR DOS II
Drive 2 Buffer

6781 1A7D Drive 1 Buffer

6780 1A7C MINI-DOS
5440 1540 (RAM RESIDENT PORTION OF DUP)

5439 153F
FILE MANAGEMENT SUBSYSTEM

1792 0700

1791 06FF
0600 USER RAM

05FF
0 0000 OPERATING SYSTEM RAM

* Varies with the number of Drive and Sector Buffers reserved.
**Depends on which Graphics Mode is currently in use.

Appendix D 81

Note 1: For given Drive Buffer allocation and Sector Buffer allocation, LOMEM can be determined by
PEEK Locations 2E7 (LOW) and 2E8 (HIGH) Hex or 743 (LOW) and 744 (HIGH) Decimal.

Note 2: To determine the amount of User Program Area available or HIMEM, you can either make use of
the BASIC FRE(O) instruction or PEEK Locations 2ES (LOW) and 2E6 (HIGH) Hex or 741 (LOW) and 742
(HIGH) Decimal.

82 Appendix D

APPENDIX E
HEXADECIMAL TO

DECIMAL CONVERSION TABLE

FOUR HEX DICITS

4 3 2 1

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 C 3072 C 192 C 12
D 53248 D 3328 D 206 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

*Use this table to convert up to four hex digits.

For example, to convert the hex number 1234 to decimal, add the entries from each
of the four columns in the table. For 1, use the column number 4, and so on.

1234 hex. = 4096
+ 512
+ 48
+ 4

4660 dec.

Other examples:

EEDD hex. =

AB hex. =

57344
+ 3584
+ 208
+ 13

61149 dec.

160
+ 11

171 dec.

Appendix E 83

APPENDIX F
HOW TO SPEED UP
DATA TRANSFERS
TO DISK DRIVE

You r new DOS II Version 2.0S has the abi I ity to Write with Read Verify (a safety
technique that should be used whenever improved reliability is more important
than rapid data transmissions). This is the way your DOS II Master Diskette is
shipped to you. To save time, however, the information can be written to the
diskette without a Read Verify. Memory Location 1913 (decimal) contains the
data that determines whether the File Management Subsystem will use Write
with Read Verify (50 hex, 80 decimal) or Write without Read Verify (57 hex, 87
decimal) Write without Read Verify is of course faster, but may not be as
reliable. To customize your version of DOS II from BASIC, you need to:

POKE 1913,80

for fast Write (Write without Read Verify) If you would rather have the Write
with Read Verify,

POKE 1913,87

To alter the version of DOS stored on diskette so that your custom version will
always boot in, simply type DOS and then use an "H" command (WRITE DOS
FI LES) from the Disk Operating System Menu to store the new version of DOS
from RAM onto your diskette.

Append ix F 85

APPENDIX G
HOW TO INCREASE
USER RAM SPACE

This section explains how to change the RAM location number to reflect the num-
ber of drives attached to your ATARI Personal Computer System. You will need
to poke the correct drive number code into RAM Location 1802 '(decimal). The
following table gives the correct entries for the number of ATARI 810 Disk
Drives. Note that a maximum of four ATARI 810 Disk Drives can be used with
DOS II since the switches on each drive can only be set from 1 to 4. Note also
that in the Binary Drive Code, there is a 1 corresponding to each drive in the
system. Although earlier in this manual, we suggested you designate the ATARI
815 Dual Disk Drive as Drives 1 and 2, and the ATARI810 DISK DRIVE as Drive 3,
you can see by the following listing that there are other options.

CODES FOR NUMBER OF ATARI810 DISK DRIVES ATTACHED

Drives Allocated

Drive 1
Drive 2
Drive 3
Drive 4
Drives 1 + 2
Drives 1 + 3
Drives 1 +2+3+4

Decimal
Drive Code

01
02
04
08
03
05
15

Binary
Drive Code

00000001
00000010
00000100
00001000
00000011 (defaulD
00000101
00001111

If your system includes both AT AR I 810 and ATARI 815 Disk Drives, you wi II have
to use your ATARI 810 Disk Drives in positions 1 through 4. The dual disk drives
can be switch-selected to any of the following pairs: (1 +2), (3+4), (5+6), or
(7 + 8). The following table gives the correct entries for the number of dual disk
drives. This data is also stored in RAM Location 1802 (decimal)

Drives 1 + 2
Drives 3 +4
Drives 5 +6
Drives 7 +8

Example 1.

03
12
48

192

00000011
00001100
00110000
11000000

If you have one ATARI 810 Disk Drive and one ATARI 815 Dual Disk Drive, how
should you structure your DOS? Since you must have a Drive 1, you can either set
the ATARI 815 to Drives 1 and 2 and the ATARI 810 to Drive 3, or set the ATARI
810 to Drive 1 and the ATARI 815 to Drives 3 and 4. Suppose you choose the for-
mer - the AT AR I 815 as Drives 1 and 2. Th is equal s a code of 03 (see above table).
Then, placing the ATARI 810 in Drive 3 position would equal a code of 04. The
value you would enter into RAM Location 1802 would be 03 + 04 = 07 in
decimal, which is0000111 in binary

Appendix G 87

88 Appendix C

Example 2.

Assume that you have three ATARI810 Disk Drives and two ATARI815 Dual Disk
Drives. Since the ATARI 810 Disk Drives can only be used in positions 1 through
4, you can see from the tables above that you would have codes of 01,02, and 03.
Placing the dual disk drives in positions 5+ 6 and 7+ 8, you would have codes of
48 and 192. Cet the total value by adding these decimal numbers, ie., 01 + 02 +
03 + 48 + 192 = 246. This value of 246 is the value you would enter into RAM
Location 1802. A 246 is 11110110 in binary

APPENDIX H

MAJOR DIFFERENCES BETWEEN
DOS I (9/24/79) AND DOS II

DOSI

Boot time was 11 seconds

Load time for the disk utility package
was 0 as it was loaded during the boot.

No Wild Card copy available

No MEM. SAV available

Requires a 1 sector boot

No AUTORUN. SYS

Files copied or duplicated in small buffer

Could not append two files together

Did not have a load-and-go

Bad sectors on diskette not indicated
during formatting.

Margins not reset automatically

One version of DOS I: system with single-
density disk drives

Had to redisplay menu before reissuing new
command

Could only write DOS File to Drive 1

DOS II

Boot time is 7 seconds

Load time for DUP is 9 seconds

Wild Card available enabling you to copy ALL
files from one diskette to another.

MEM. SAV available allowing the user to have
more memory space. This makes for a more
powerfu I DOS.

Requires a 3 sector boot enabling DOS II to han-
dle double-density drives. As a result, DOS I and
DOS II diskettes cannot be interchanged.

Has an AUTORUN.SYS file enabling a file to be
loaded and executed upon booting.

Entire file(s) copied or duplicated into buffer
which can be as large as user memory area.

SAVE BINARY FILE has "/A" option
allowing two files to be appended together.

Can create load-and-go type file which enables
you to select a file and have it automatically run
without entering a RUN address.

A diskette with bad sectors cannot be for-
matted.

Margins are reset to original position each time
DOS II is entered.

Two versions of DOS II: systems with single/
double-density disk drives or systems with single-
density disk drives only.

Choice of redisplay of menu or entering a new
command

Can write DOS Files to any drive

Appendix H 89

DOSI

Could only have three files open
simultaneously

NOTE/POINT not available for random access.

90 Appendix H

DOSII

Can have up to eight files open simulta-
neously

NOTE/POINT is available for random access.

APPENDIX I

STRUCTURE OF
A COMPOUND FILE

COMPOUND FILE STRUCTURE USING
C. COpy FILE WITH APPEND

Decimal Hex
Byte No. No. No. Description

1 255 FF Identification Code (PART 1)
2 255 FF
3 0 00 Starting Address (PART 1)
4 80 50
5 31 1F Ending Address (PART 1)
6 80 50

DATA (PART 1)
32 Bytes

38 255 FF Identification Code (PART 2)
39 255 FF
40 32 20 Starting Address (PART 2)
41 80 50
42 143 8F Ending Address (PART 2)
43 80 50

DATA (PART 2)
112 Bytes

COMPOUND FILE STRUCTURE USING
K. BINARY SAVE WITH APPEND

Decimal Hex
Byte No. No. No. Decscription

1 255 FF Identifier Code
2 255 FF
3 00 00 Starting address (PART 1)
4 80 50
5 31 1F Ending address (PART 1)
6 80 50

Data (PART 1)
32 Bytes

38 32 20 Starting address (PART 2)
39 80 50
40 143 8F Ending address (PART 2)
41 80 50

Data (PART 2)
112 Bytes

Append ix I 91

Access:

Address:

Alphanumeric:

Array:

ATASCII:

AUTORUN.SYS:

Baud Rate:

Binary Load:

Binary Save:

Bit:

Boot:

APPENDIX J

GLOSSARY OF TERMS

The method (or order) in which information is read from, or written to
diskette

A location in memory, usually specified by a two-byte number in
hexadecimal or decimal format. (Maximum range is O-FFFF
hexadecimal.)

The capital letters A-Z and the numbers 0-9, and/or combinations of
letters and numbers. Specifically excludes graphics symbols, punc-
tuation marks, and other special characters.

A one-dimensional set of elements that can be referenced one at a
time or as a complete list by using the array variable name and one
subscript. Thus the array B, element number 10 would be referred to
as B(10). Note that string arrays are not supported by BASIC, but you
can pick up each element within a string; for example, A$(10). All
arrays must be dimensioned before use. A matrix is a two-dimensional
array.

The method of coding used to store text data. In ATASCII (which is a
modified version of ASCII, the American Standard Code for In-
formation Interchange), each character and graphics symbol, as well
as most of the control keys, has a number assigned to represent it. The
number is a one-byte code (decimal 0-255) See the ATARI BASIC
Reference Manual for table.

Filename reserved by Disk Operating System.

Signaling speed or speed of information interchange in bits per
second.

Loading a binary machine-language object file into the computer
memory.

Saving a binary machine-language object file onto a disk drive or
program recorder.

Abbreviation of "binary digit." The smallest unit of information,
represented by the value 0 or 1.

This is the initialization program that "sets up" the computer when it
is powered up. At conclusion of the boot (or after "booting up"), the
computer is capable of loading and executing higher level programs

Break: To interrupt execution of a program. Pressing the
break in execution

key causes a

Append ix J 93

Buffer:

Byte:

CIO:

CLOSE:

Data:

Debug:

Decimal:

Default:

Delimiter:

Density:

Destination:

Directory:

Diskette:

DOS:

DOS.SYS:

Drive
Specification or
Drivespec:

Drive Number:

End of File:

94 Appendix J

A temporary storage area in RAM used to hold data for further
processing, input/output operations, and the like.

Eight bits. A byte can represent one character. A byte has a range of
0-255 (decimal).

Central Input/Output Subsystem. The part of the OS that handles in-
put/output.

To terminate access to a disk file. Before further access to the file, it
must be opened again. See OPEN.

Information of any kind, usually a set of bytes.

To isolate and eliminate errors from a program.

A number base system using the digits 0 through 9. Decimal numbers
are stored in binary coded decimal format in the computer. See Bit,
Hexadecimal, and Octal.

A condition or value that exists or is caused to exist by the computer
until it is told to do something else. For example, the computer
defaults to GRAPH ICS 0 until another graphics mode is entered.

A character that marks the start or finish of a data item but is not part
of the data. For example, the quotation marks (U) are used by most
BASIC systems to delimit strings.

The closeness of space distribution on a storage medium; i.e.. the num-
ber of bytes per sector. Single density records 128 bytes per sector and
double density records 256 bytes per sector.

The device or address that receives data during an exchange of in-
formation (and especially an I/O exchange). See Source.

A summary of files contained on a diskette by filename and file size.

A small disk. A record/playback medium like tape, but made in the
shape of a flat disk and placed in an envelope for protection. The ac-
cess time for a diskette is much faster than for tape.

Disk Operating System abbreviation. The software or programs that
facilitate use of a disk drive system.

Filename reserved by Disk Operating System.

Part of the filespec that tells the computer which disk drive to ac-
cess. If this is omitted the computer will assume Drive 1.

An integer from 1 to 8 that specifies the drive to be used.

A marker that tells the computer that the end of a certain file on disk
has been reached.

Entry Point:

File:

Filename:

Filename
Extender or
Extension:

File Pointer:

Filespec:

Format:

Hexadecimal
or Hex:

Indexed
Addressing:

10CB:

iocb:

Input:

INPUT:

Kilobyte or K:

The address where execution of a machine-language program or
routine is to begin. Also called the transfer address.

An organized collection of related data. A file is the largest grouping
of information that can be addressed with a single name. For example,
a BASIC program is stored on diskette as a particular file, and may be
addressed by the statements SAVE or LOAD (among others).

The alphanumeric characters used to identify a file. A total of eight
numbers and/or letters may be used, the first must be a letter.

From 0 to 3 additional characters used following a period (required if
the extender is used) after the filename. For example, in the filename
PHONLlST.BAS the letters "BAS" comprise the extender.

A pointer to a location in a file. Each file has its own pointer.

Abbreviation for file specification. A sequence of characters which
specifies a particular device and filename. Do not create two files with
exactly the same filespec. If you do, and they are both stored on the
same diskette, you will not be able to access the second file. And, as
they both have the same filespec, the DOS functions of DELETE FILE,
RENAME FILE, and COPY FILE will act on both files.

To organize a new or magnetically (bulk) erased diskette onto tracks
and sectors. When formatted, each diskette contains 40 circular
tracks, with 18 sectors per track. Each sector can store up to 128 bytes
of data (single density) or 256 bytes of data (double density).

Number base system using 16 alphanumeric characters: 0,1,2,3,4,5,
6,7,8,9,A,B,C,D,E, and F.

See Random Accessing.

Input/Output Control Block. A section of RAM reserved for addressing
an input or output device and processing data received from it or for
addressing and transferring data to an output device.

An arithmetic expression that evaluates to a number between 1 and 7.
This number is used to refer to a device or file.

To transfer data from outside the computer (say, from a diskette file)
into RAM. Output is the opposite, and the two words are often used
together to describe data transfer operations: Input/Output or just I/O.
Note that the reference point is always the computer. Output always
means away from the computer, while Input means into the computer.

A BASIC command used to request either numeric or string data from
a specified device.

1024 bytes. Thus a 16K RAM capacity actually gives us 16 times 1024
or 16,384 bytes.

Appendix J 95

Least Significant
Byte:

Machine
Language:

Most Significant
Byte:

Null String:

Object Code:

Octal:

OPEN:

Parameter:

Peripheral:

POKEY:

Random
Accessing:

Record:

Sector:

Sequential
Addressing:

Source:

Sou rce Code:

Stri ng:

System Diskette:

Tokenizing:

96 Appendix J

The byte in the rightmost position in a number or a word.

The instruction set for the particular microprocessor chip used,
which in ATARI's case is the 6502

The byte in the leftmost position in a number or a word.

A string consisting of no character whatever. For example, A$ = ""
stores the null string as A$

Machine language derived from "source code," typically from assem-
bly language.

The octal numbering system uses the digits 0 through 7. Address and
byte values are sometimes given in octal form.

To prepare a file for access by specifying whether an input or output
operation will be conducted, and specifying the filespec.

Variables in a command or function.

An I/O device.

A custom I/O chip that manages communication on the serial bus.

The method of reading data from a diskette directly from the byte
and sector where it was stored without having to read the entire file
sequentially.

A block of data, deliminated by EOL (End-of-Line, 9B Hex) characters.

A sector is the smallest block of data that can be written to a disk file
or read from a file. Each single-density sector can store 128 bytes of
data and each double-density sector can store 256 bytes of data.

The method of reading each byte from the diskette in order, starting
from the first byte in the sector.

The device or address that contains the data to be sent to a
destination. See Destination.

A series of instructions, written in a language other than machine
language, which requires translation in order to be executed.

A sequence of letters, characters, stored in a string variable. The string
variables name must end with a $.

An exact copy of original Master Diskette. Always use backup copies
of your Master Diskette instead of the original. Keep backup copies of
all important data and program diskettes.

The process of interpreting textual BASIC source code and converting
it to the internal format used by the BASIC interpreter.

Track:

Variable:

Write-Protect:

A circle on a diskette used for magnetic storage of data. Each track
has 18 sectors, each with 128 byte storage capability. There are a total
of 40 tracks on each diskette.

A variable may be thought of as a box in which a value may be stored.
Such values are typically numbers and strings.

A method of preventing the disk drive from writing on a diskette.
AT ARI diskettes are write-protected by covering a notch on the disk-
ette cover with a small sticker.

Appendix J 97

A

Access 65, 66, 93
Accessing damaged files 67
Address 93
Additional disk drives 2
Aexp 73
Aexp1 52, 73
Aexp2 52, 73
Alphanumeric 93
Appendices 71-93
Array 93
ATASCII 93
AUTORUN. SYS 9, 67, 68, 93
Avar 74

B

BASIC commands 49
BASIC error messages
BASIC words used
Baud rate 93
Binary load 7, 9, 43, 93
Binary save 7, 9, 39-42, 93
Bit 93
Boot 93
Boot errors 22
Break 93
Buffer 94
Byte 94

c
CIO 94
CLOSE 52,94
Cmdno 60,73
Commands
Compound file structure 41, 42
Control blocks 51, 95
Copy file 5, 9, 30, 31
Create MEM.SAV 44
Creating a system diskette 12
Using an ATARI 810 Disk Drive 12
Using an ATARI 815 Dual Disk Drive 12,13

D

Daisy-chaining 2
Data 94

INDEX

Data files 19, 65
Data transfer to disk drives 37
Debug 94
Decimal 81, 83, 94
Default 94
Delete file 5,9,10, 32, 33
Delimiter 94
Density 94
Destination drive 94
Differences between DOS I and DOS II 89, 90
Direct accessing 54
Directory 94
Disk directory 5, 27, 29, 67
Disk drives 1,2,3,11,69,87-88
Diskettes 3, 69, 94
Disk Operating System (DOS) 1, 94
DOS command 71
DOS menu 4, 27
DOS menu options 5
DOS.SYS 9, 94
Double density 4,15,16, 69, 91
Drive codes 2, 3
Drive number 2, 3, 13, 94
Duplicate file 6, 9, 47, 48
Duplicating a diskette 6, 9, 12, 37
Using a single disk drive 11,12,37
Using multiple disk drives 11,13,38

DUPSYS 9,30

E

END command 71
End of file 94
ENTER command 50,63, 65, 71
Entry point 95
Error code messages 75-80
Exp 73

F

File 95
File Management Subsystem (FMS) 9,11
Filename 19,20, 28, 95
Filename extenders 19, 20, 28, 95
File pointer 95
Filespec 19, 20, 28, 52, 73, 95
Formatting a diskette 6,9-11,36,95

Index 99

100 Index

G

GET command 57, 58, 71
GET/BYTE program 67
Glossary of terms 93

H

Hexadecimal 81, 83, 95

Identifying diskette files 19
Increasing user RAM space 87
Input 95
INPUT/OUTPUT commands 51,53,54,71,95
10CB 51,73,95
#iocb 52,95

K

Kilobyte 95

L

Labeling disk drives 3
Labeling diskettes 15
Least significant byte 96
Lineno 74
LIST command 50, 63, 65, 71
LOAD command 23, 25, 49, 71
Lock file 6, 9, 34, 35

M

Machine language 96
Master diskette 9,11,12
Memory maps 81
MEM.SAV 6,9,29,30,44-46
Creating MEM.SAV 44
MEM.SAV to load binary files 46
MEM.SAV to write assembly language
programs 45

Menu 4
Most significant byte 96
Mvar 74

N

Notes and terminology 73
NOTE command 54, 71
Null string 96

o
Object codes 96
Octal 96
OPE N command 51, 52, 71, 96

p

Parameters 21, 28, 39, 40, 96
Peripheral 96
POINT command 55, 56, 57, 72
PRINT command 53, 54, 72
Program files 19
PUT command 57, 72

R

RAM 1,87
Record 96
Rename file 6, 9, 32, 33
Run at address 7, 9, 44, 46
Run cartridge 5, 9, 29, 46
RUN command 24, 25, 51, 72

s
SAVE command 23, 24, 50, 72
Sector 10,11,96
Sequential addressing 96
Single density 4, 11, 15, 16, 69
Conversion of single density to double
density 69, 91

Source code 96
STATUS command 58, 59, 72
String 96
Svar 74
System diskette 12, 13, 96

T

Tokenized file 49,96
Track 10,96
TRAP command 72

u
Unlock file 6, 9, 35
Untokenized file 49, 71

v
Variable 74, 96

w
Wild cards 21
Write DOS file 30, 35, 36
Write new DOS 6
Write-protecting a diskette 14,15, 35, 36,96

x
XIO command 60-62, 72

